
ETL-0586
AD-A239 370

New Methods of Change
Detection Using Multispectral
Data

Charles Sheffield
Gil Richardson

Earth Satellite Corporation
6011 Executive Boulevard, Suite 400
Rockville, MD 20852

May1991 AUG 12199tMay 1991

Approved for public release; distribution is unlimited.

Prepared for:

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

91-07387l I l i li lul l II ttilt i l I

I
I
I,
I
I
I

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official
Department 3f the Army position unless so designated by other
authorized documents.

The citation in this report of trade names of comercially available
prodtcts does not constitute official endorsement or approval of the
use of such products. I

I
I
I
I
I
!
I
I

Form Approved

REPORT DOCUMENTATION PAGE OM ,o 07-o088

P1-11 emclnq b.004em fol th's O.ICdof of f o-a~t-o % ,$1-Aled T: ahe-qe o.r oer -uoOr$C *n(lvaq tCe me oor eC ew.flq stC'yn . ef''' . it q d4ta $OIce%
34be n , m'M a^ nn the data nee-ded. and ca*oletnq 4' d le. e.-nq T-e 'Coe1'O Of . Mo.f-aon se'd cemn l'e#, e .dn th1 bwden "~t &i.t 0, 4y ;the,*' l of Ithy

(01Iecto' Of ,ntO-avon' ow~d~ng W qet' tO dw' 9 15$- owden !C N.%h "CtCn -eada'A. se-cenM D'rectitC r0(of 1,-41'n oe,.tcy 0n-0 peocts. 12 15 ,eflewso
Ca,,% -9.av S..te 1204. AIl-gtom. Aft22n2f0-C2 J~'d It C' e V*5nfe, 'e 98.;ej -moe'-c'. Re'd~ct~on P'oecl(07C,1.0*88) ~.n-"':
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 15, 1991 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NEW METHODS OF CHANGE DETECTION USING MULTISPBCTRAL DATA

6. AUTHOR(S)

CHARLES SHEFFIELD AND GIL RICHARDSON

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
EA H SATEL.ITE CORPORATION ETL-0586
6011 Executive Boulevard, Suite 400
Rockville, MD 20852

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER
U.S. AIY ENGINEER TOPOGRAPHIC LABORATORIES ETL-0586
ATIN: ETL-SL-T (Don Davis)

FORT BELVOIR, VA 22060-5546

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report discusses the final phase of a project to develop multispectral
change detection methods with emphasis on human activities. Two new algorithms
were developed and tested: a Spectral/Spatial Classifier and a Feature Vector
Spectral Classifier. The Spectral/Spatial method appears to be a powerful new
tool. The Feature Vector results were inconclusive.

I

14. SUBJECT TERMS 15. NUMBER OF PAGES
128

16. PRICE CODE

I 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P,,ecr,bed lbf ANSI Std Z39-10
296-102

NEW METHODS OF CHANGE DETECTION
USING MULTISPECTRAL DATA

FINAL REPORT

PREPARED UNDER
CONTRACT NO. DACA76-86-C-0018

FOR THE

U.S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VA

MAY 1991

TABLE OF CONTENTS

SUM M ARY

ACKNOWLEDGEMENTS ii

1. THE COMPLEMENT APPROACH TO SCENE CLASSIFICATION 1

1.1 The Complement Approach to Scene Analysis and
Change Detection 2

1.1.1 Overview 2
1.1.2 Single Scene Complement Approach 3

1.1.2.1 Comments 12
1.1.2.2 Notes 12

1.1.3 Change Detection Using the Complement

Approach 15

1.2 Results Using the Complement Approach 19

1.2.1 Geometrical viewpoint 19
1.2.2 The use of spatial information 20
1.2.3 Experiments with S and S-squared classifiers 21

1.2.3.1 Initial experiments 21
1.2.3.2 Main experiments 22

1.2.4 Results 23

1.2.4.1 S-classification 23
1.2.4.2 S-squared classification 24
1.2.4.3 Change detection using the S-squared

classifier 26

1.3 Further Experiments 27

1.4 Conclusions 29

2. MULTISPECTRAL ANALYSIS USING THE FEATURE VECTOR APPROACH 31

2.1 Background 31
2.2 M ethod of analysis 31
2.3 Results ..33
2.4 Conclusions 34

APPENDIX 1: SOURCE CODE LISTING AND FLOW LOGIC FOR PROGRAMS
DEVELOPED UNDER THIS CONTRACT

I APPENDIX 2: CONTRACT DELIVERABLES NOT INCLUDED AS PART OF THIS
REPORT

I APPENDIX 3: PROJECTION OPERATORS AND BAND COMBINATIONS

I
I

I/

Accession For
NTIS GRA&I [

Ullaruiounced [

By
Distribution/

Availlalllity Codes
iAvail and/orDist I

Spca

SUMMARY

This report describes the final phase of an on-going project to examine multispectral

classification methods, with emphasis on change detection to identify human activities. The

first part of this effort, conducted from April to August, 1988, emphasized "conventional"

multispectral classification. The emphasis in the present phase of the contract was on new

classification and change detection techniques.

Specifically, two new algorithms were implemented and tested on multiple date

Thematic Mapper data of the Washington, D.C. area. The methods, described in the body

of the report, may be termed Spatial/Spectral (S-squared) analysis, and Feature Vector

spectral analysis. The S-squared procedure, at least insofar as the tests performed on this

project are concerned, shows spectacular promise. It produced much better results than a

conventional multispectral classification. These results are discussed in detail in this report,

with associated color imagery.

The Feature Vector spectral analysis gave results, that on the basis of the tests

performed on this project, are inconclusive. The technique appears to have potential for

detection of man-made features, but was not successful as a change detection tool.

The structure of this report is as follows:

1. Description of the Spectral/Spatial (Complement Approach) method, and the
results obtained therefrom.

2. The Feature Vector spectral approach, and its results.

APPENDIX 1: Source code listing and flow logic for programs developed under
this contract.

APPENDIX 2: Contract deliverables not included in this report; specifically,
large photographic products, and magnetic media products.

APPENDIX 3: Projection operators and band combinations.

Ii

i ACKNOWLEDGEMENTS

I
The ideas used in the Complement Approach were derived from project

discussions on the problem of small statistics with Don Davis of the U.S. Army Engineer

Topographic Laboratories and with Jim Hammack of the Defense Mapping Agency. We

would like to thank these individuals and Bob Rand of USAETL for useful discussions

during the course of the project, and in particular, thank Don Davis for delineating the

logical flow of the Complement Approach algorithm drawn out in Appendix 1.

I
I

I2

1. THE COMPLEMENT APPROACH TO SCENE CLASSIFICATION.

This section of the final report describes a new technique for scene classification

developed under this contract. It is termed the Complement Approach and it employs both

spectral and spatial information contained in image scenes. The technique was developed

early in 1990 and employed in practical experiments under this contract, following a series of

meetings between contractor and government personnel, in which discussions centered on

solving the problem of "small statistics", i.e., on the problem of analyzing within a remotely

sensed scene the small features, such as buildings and roads, that are of major practical

importance, but which do not represent a statistically large fraction of total scene area.

Conventional spectral classification methods normally lose such features by absorbing them

into some other class of ground cover.

This section of the report is organized in four parts:

General Approach

Results, including Image Examples

Further Experiments, and

Conclusions.

The source code of all computer programs, developed in the course of the contract

and implementing the Complement Approach, is given in Appendix 1.

S1.1 The Complement Approach to Scene Analysis and Change Detection

1.1.1 Overview.

j This technique of scene analysis is designed to find scene elements that occupy few

pixels, or partial pixels. It works best when the scene elements of main interest fall into

I such a category; by contrast, most approaches work well for the majority of pixels in a

scene, at the expense of pixels representing "rare" ground cover types (e.g., buildings,

I roads) as a small percentage of total pixel population.

i The general term "Complement Approach" is used since at each stage of analysis, the

pixels of main interest are the complementary set to the pixels identified; in other words, the

method works by removing pixels from the set to be analyzed. The process is complete

when no pixels remain to be analyzed.

Change detection is performed by comparing two scenes for which analysis has been

performed. The discussion given here first describes single scene analysis, and then

describes two-scene change detection. The approach can utilize varying levels of human

expert assistance. We characterize these as:

(1) No expert help;

(2) Expert help from prior map data; and

(3) Expert help by interactive analysis.

These three approaches are all variations of (1), which was employed exclusively on

the experiments of this project.

2

1.1.2 Single Scene Complement Approach

For purposes of analysis, every pixel in a scene to be analyzed is considered to b"-

either a "pure" pixel, representing essentially one type of ground cover with a defined mean

and small variance, or a "mixed" pixel, where several different ground covers each occupy

part of the pixel. A mixed pixel may be "simple," if the ground covers within it also occur

in pure pixels within the scene, of sufficient numbers that their spectral reflectance can be

defined by a mean and variance; or a mixed pixel may be "complex," if some ground cover

within it does not occur in any pure pixels.

As examples of each category, a pure pixel might be a pixel completely covered with

grass or water, in a scene with a good deal of water and grass covers. A simple mixed pixel

would be a pixel whose area was part grass and part water. A complex mixed pixel would

be part asphalt, part grass, or part asphalt, part grass, and part water, in a scene where no

pixels were completely covered by asphalt.

3 The procedure determines, in order, pure pixels, simple mixed pixels, and complex

mixed pixels. It is assumed that no a priori information is available for the spectral signature3 of material present only in .--mplex mixed pixels. Later, a way is described by which any

such a priori information can be incorporated in the analysis.

Stage 1. Select a training area of (presumed) pure pixels. Develop mean3 and variance/covariance matrix for the number of bands iused (e.g., 6 for TM, 4 for

MSS) and alarm all pixels in scene at 1-sigma level. Interactively, vary the variance

Sup and down from 1-sigma level to cover a "pure pixel" set. Remove these pixels

from the data set considered, and label removed pixels with an appropriate class

* identifier.

Sg2. Repeat this procedure for other pure pixel training areas, each

time varying (interactively) the variance, then labeling choscn pixels with suitable

class identifiers. These pixels are removed from the data set still to be considered.

3

I

Stage 3. When all pure pixel data sets have been tagged and removed,

the remaining pixels will be simple or complex mixed pixels, or possibly pure pixels

I of an unidentified class. These remaining pixels should constitute a small percentage

of the original pixel set.

NOTE: To this point, all analysis has been performed using purely spectral

I properties of the data, and is a conventional classification exercise. It has been described as

a supervised operation, but could equally well be unsupervised. Similarly, any type of

classification algorithm (e.g., maximum likelihood, parallelepipedon) may be used.

However, there is one important difference from standard classification in both execution and

intent. Normally, the objective of classification is to assign all scene pixels to pure classes

(i.e., each pixel is presumed to be a pure pixel). A "successful" classification is thus one

with no unclassified pixeis, and to achieve that result the region of spectral space occupied

by each pure class is often expanded. When this is done, mixed pixels tend to be assigned to

a pure class. Since in the Complement Approach we specifically do not want mixed pixels

assigned to pure classes, the variance associated with each pure class will be kept small, and

more unclassified pixels than usual will remain when the pure classes have been determined.

To do better than standard classification, it is necessary to invoke more than spectral

information about mixed pixels. This additional information is sptial, as described below.

Stan 4. When the pure pixel classes have been identified, classified, and

removed from the data set, all remaining pixels are associated with their set of four

I nearest neighbor pixels. These neighbors may themselves be pure or mixed pixels; in

either case, each neighbor is part of an already-classified and removed pixel set, or it

I is not. The set of pixels not already classified is now divided into two groups: A,

the set of pixels at least two of whose neighbors are pure pixels of known classes, and

B, the set of pixels no two of whose neighbors are pure pixels of known classes (See

Figures 1 and 2).

I
I

4I

Figure 1: Stage 5 analysis: illustrations.

I Group A pixels.

1 class

* las P class Case 1
x Y

* class
y

* class
x

3 cass P Case 2

?

* class
x

clss P Case 3

classI z

u Figure 2: Stag-e 5 analysis: illustrations.

N Group B pixels.

class

i; Is
class P Case 1Ix

_

I?

IP Case 2

I?

I class
x

* las P class Case 3
x x

3 class
x

Pixels of group A are subject to the next stage of analysis. Analysis of pixels

of group B is deferred until later.

Stae 5. Pixels of group A are most likely to be simple mixed pixels,

where the mixture consists of only the pure pixel types represented in the nearest

neighbors. This assumption is now tested. Let the spectral reflectance mean of class

j averaged over the nearest neighbors of any given pixel P be the vector L . In

other words, if R of the neighbors of the given pixel are of pure class j,

R

]c--EE; IR(1)I-
P-1

or

J

I-

I
where e is the vector of reflectances for each spectral band (so this would be air

vector with 4 components for MSS data, 6 for TM data excluding thermal I/R).I
Now if P is a mixture of J neighbor classes, we will have

I

5

I C~a1 ~jcE2 ~+ *+t~ ~(2)

If we consider only the 4 nearest neighbors of P, we have J 4 (i.e., only 4 pure

classes, at most, can be present in the nearest neighbors). Further, each coefficient a1

must be non-negative, since a positive area must be covered by any class present in a

pixel.

We treat (1) as a set of linear equations which determine aj by solution of

equations if !-4 and j, has four components, by least squares otherwise (always

possible for TM data since there are at least 6 equations and at most 4 pure neighbor

classes). See Notes A and B.

Now either the fit (2) is achieved to some satisfactory tolerance for pixel P, or

it is not. If (2) is satisfied, pixel P is a simple mixed pixel, and it is labeled with the

classes it contains and removed from the set A. If no satisfactory fit is achieved by

(1), P remains for further analysis. This may be because neighbors of P are simple

mixed pixels, and it was therefore not considered in the first pass through group A

pixels. The process must thus be iterated, to see if any pixels now have two or more

known neighbors of simple mixed type, in addition to neighbors of pure pixel type.

Stae. The remaining (i.e., not meeting tolerances) pixels in group A

and the pixels in group B are aggregated to form a single set. This set is now divided

into two groups: A', the set of pixels at least two of whose neighbors are pure pixels

of known classes or simple mixed pixels as determined in Stage 5; and B', the set of

pixels no two of whose neighbors are pure pixels of known classes Qr are simple

mixed pixels as determined in Stage 5.

6

StageJ. As before, the assumption to be tested is that pixels in group A'

are simple mixed pixels, where now the mixture consists of pure pixel types

represented in nearest neighbors, and of classes represented in known simple mixed

pixels that are nearest neighbors (See Figures 3 and 4). However, the analysis

method used in Stage 5 must be modified, because now the neighbors of any pixel, P,

in group A' may be simple mixed pixels rather than pure pixels. (Note that if the

nearest neighbors of P are pure pixel types only, the analysis for them will be

identical to that of Stage 5. It need not be repeated, and such pixels may be placed at

once into group B', since they must have failed the test during Stage 5 analysis.)

At this point an assumption is introduced to assure determinancy of subsequent

calculations. No more than four classes will be permitted as components in the

neighbors of P. If more than four classes are present, because the neighbors are

mixed pixels, P will be placed in class B'.

The analysis to determine if pixels of A' are simple mixed pixels now

resembles that of Stage 5, but differs in one important respect. Instead of using

computed local reflectance means of the nearest neighbors of P, the class means must

be used for classes present in the neighbors of P, as either pure or simple mixed

pixels. This is less good than using local pure pixel reflectance means, but it is

necessary because now the pixels in the group A' must have as neighbors mixed

pixels as well as possible pure pixels (the case of all pure pixel neighbors was already

disposed of in Stage 5).

If the neighbors of P contain J classes (J 4, by the restrictive assumption

already made), we seek a fit of the form:

7

I Fig-ure 3: Stagpe 7 analysis: illustrations.

Group A' pixels.

class

class p casCase 1

class

x y & z

I

Figure 4: Stage 7 analysis: illustrations.

Group B' pixels.

I
classI x

SS P class Case 1

class

xIX
I

?

SP ? Case 2

I?
I

I class
X&Q

I class P class Case 3
X&Y Y&z

* class
z&w

I
I
I
I

a(3)

where now C , _2 are class mean spectral reflectances.

H The solution by least squares proceeds as before. Either the fit of (3) is

I achieved to some tolerance, or it is not. If it is, then pixel P is a simple mixed pixel,

and it is labeled with the classes it contains and removed from the set A1 . If not,

pixel P is added to the set B1.

Stage 8. Stage 7 may now be repeated, splitting the set BI iihto two parts,

A2 and B2. In this case, A2 is the set of pixels whose neighbors are pure pixels or

3 simple mixed pixels (repeating Stage 7 may yield new mixed pixels, since

the first time through, simple mixed pixels identified in Stage 7 were previously

of unknown type).

The iteration should be continued, until no new pixels are classified. The

process will always converge, since each iteration removes pixels from the A set, and

never restores them.

Stge_9. At this point, all identifiable pure pixels and simple mixed pixels

have been tagged and removed from the total pixel set. The remaining pixels may be

pure or simple mixed pixels of unidentified classes, or complex mixed pixels

containing materials present only as partial mixed pixels. In a traditional

I classification exercise, these pixels, hopefully few in number, are regarded as

undesirable noise, or as a failure of the classification process. However, in seeking

point or line information for cartographic use, this residual data set is likely to contain

the scene elements of most interest. It is the broad, statistically dominant regions of

8

pure pixels which are of less interest, and have been removed from consideration in

the previous analysis.I
The unidentified pixels in the B" set are now divided into two groups: S,

I when one or more nearest neighbor pixels belong to the complementary set of pixels

already classified; and T, when all neighbor pixels are themselves unidentified. If

I most pixels of the B() set are of group T, it is likely that the variances permitted in

the first classification of Stages 1 and 2 were too small. The analysis can be repeated

with more generous variances. However, there is then also a danger of throwing

away (by classifying them as pure pixels) complex mixed pixels of real interest.

A better method is the examination of pixels in the T-set, to see if they

constitute a new and unidentified cluster (i.e., a new pure pixel set) with tight

statistical grouping. If so, this class is added to the pure classes and Stages 3-9 are

repeated. (This alternative was not explored in the current effort.)

U Stage 10. Analysis of group S pixels is now performed. At this point, a

priori information on the spectral reflectances of small targets that may be within the

scene can be utilized.

The assumption is that the pixels of group S are complex mixed pixels, with

one or more (but only one per pixel) unidentified materials present at the sub-pixel

level. For example, a concrete road may be present in a scene, of a width small

enough that no pixel is all concrete. To test the assumption, we ask if the spectral

reflectances of a pixel P in group S can be made up of a positive-weight combination

of the reflectances present in the pixels that neighbor it, plus some amount of an

added class (i.e., material) of unknown nature, or of some class whose reflectances

are provided a 1por.

Thus, we seek a relationship of the form

9

I

I(4)

*I or

J

j-1

where a1, C2... and 3 are unknown weight coefficients, c , c are known

vectors of spectral reflectances, for the classes occurring in the neighbors of P; and

Y is the vector of spectral reflectances for an unknown, or a priori assumed, extraI
material present at the sub-pixel level.I

Now let us count unknowns and equations. In order to be specific, assume we

are working with 6-band TM data, and as before, limit the number of classes

permitted in the neighbors of P to 4 or less. Assume that the vector X is

unknown. Then a single pixel P yields 6 equations (one for each band reflectance)

and up to I 1 unknowns (coefficients al.. . 4, 3, and six unknown components ofI
). However, the components of are the same, or close to the same, in each

pixel. Thus if we have M pixels with some of the material of spectral reflectance

e within each of them, there will be 6M equations and at most 5M+6 unknowns.

This is thus a determinate situation for M _> 6.

I

In the case where there is a priori information, so that the spectral reflectance

I of a material present at sub-pixel level is known, then each pixel P contains no

more than 5 unknowns (011... a 4, 0), and one pixel provides 6 equations. Thus the

proportion of present in P can be estimated from a single pixel. (See alsu Note

B.)I
As before, the solution to (4) by least squares is acceptable only if al...a, (3,

X all have positive values.

I
If several unknown materials are present at sub-pixel level, the problem is

more complicated. It is necessary to specify image regions in which only one

unknown material is likely to occur. This information may be provided by analyst

action, or by a prori (cartographic) information about the contents of a scene.

!
When Stage 10 has been performed for each pixel (assumed known) or

groups of 6 or more pixels (t assumed unknown) in group S, pixels for which the

fit (4) is within a tolerance are now tagged as containing fractions of a new material

of spectral reflectance vector YI
All such pixels are now displayed, and examined to see if they exhibit point or

line characteristics.

11

1.1.2.1. COMMENTS

1. The approach proposed here forms a basic methodology to tackle the "small

I statistics" problem encountered whenever scene targets are present as only a few pixels, or

only as partial pixels. Since the approach is new, the stages described are likely to need

I revision based on experience, or at least careful evaluation, before a standard program

module can be routinely used.

2. Of the required tools, Stages 1 and 2 were standard and already existed.

IStages 3 through 10 required for program development under this contract.

1 3. The reason that Stages 3 through 10 are not in standard classification packages

is their simultaneous use of spectral and spatial scene information, and their emphasis on the

small statistics aspects of scene classification.

I

3 1.1.2.2. NOTES

3 NOTE A: The least squares solution for at

Write al, C12... aj as the vector a, of J components (J!54).

Then,

J

I i-I

or in matrix terms,

I
I
I

12I

ci-Ej Cuaj

C is a matrix of B rows and J columns, where B = number of spectral bands and J

number of classes in nearest neighbors.

Since J < B, (CTC) is non-singular, of dimension JxJ.

The least squares solution of the set of equations is given by:

jt-(CTC)-'CT4C

where C = (c 1).

NOTE B: Interpretation of the coefficients oe,,B

For the pixel P, we made a fit of the form:

What is the meaning of the coefficients in this fit? If a pixel has area A and spectral

_ reflectance Z , then the spectral reflectance per unit area is A An area ojA will

contribute spectral reflectance aj . Thus if a pixel is made up of different materials,

the total spectral reflectance will be

I

I
13

I

where Ejaj+P-1

since the sum of areas a, A and OA must be A. The condif)n that the a's and 0 sum to

unity can be imposed in the fitting procedure. However, it is desirable to experiment with

and without this condition.

It is particularly dangerous to seek to impose the unit sum condition when

comes from an apriori reflectance. The actual observed reflectances include sun angle

and atmospheric effects, and these serve as a (usually known) multiplier on j Thus the

condition that the coefficients sum to unity will no longer be fulfilled.

14

1.1.3 Change Detection Using the Complement Approach

General Comment

One popular approach to change detection proceeds first by creating a difference

image, band by band, then analyzes that image, usually by some form of multispectral

classification. Such a method has the advantage of economy, since the classification, which

is usually expensive of processing time, is done only once.

The use of differences images is not appropriate for change detection using the

Complement Approach, since the signatures of different ground types within the scene are

needed to find partial pixels. To see this by example, suppose that there are available two

scenes at different dates of the same ground area. Suppose that the whole scene consists of

three types of ground cover: grass, water, and concrete. If the images of the two different

dates are differenced, band by band, the resulting difference scene will contain the following

possible types of pixels:

(1) pure unchanged (grass remains grass, water remains water, concrete remains

concrete)

(2) pure changed (grass to water, water to concrete, etc.)

(3) mixed pixels.

From the difference image alone, there is no way of knowing if the mixed pixel was

mixed on both scenes, or if it is pure on one, and mixed on the other. Further, since there

will be small sub-pixel off-sets of one date from the other, the fraction of pure pixel types

within each mixed pixel will be different on the two dates. Finally, there is no way of

relating pixels to their neighbors in any meaningful way.

The method of scene differencing before classification is therefore not appropriate

when using the Complement Approach. The basic reason is that a statement of "No change"

from one date to another, as provided in analysis of a difference image, lumps together to a

15

single pixel class all the information, "Grass remains grass, water remains water, concrete

remains concrete, etc.," obtained when the two dates are analyzed separately.

Procedure for Change Detection with the Complement Approach

Each date is processed using the method described in Section 1.1.2. The result of

such processing is a scene in which pixels fall into one of the following categories:

(1) pure pixels, of a class which is described by a class identifier (e.g., a letter or

number). Note that the class has not been described in physical terms, such as
"grass" or "water", unless operator involvement has provided such labels;

(2) simple mixed pixels, made up of partial pixels of known pure classes, each

class described by the same class identifiers as in the pure pixels;

(3) complex mixed pixels, made up of partial pixels of known pure classes, and

new classes of materials present only at the sub-pixel level;

(4) pixels that cannot be classified. Such pixels may be pure pixels of unidentified

classes, or pixels that because of other factors cannot be classified (e.g.,

anomalous terrain aspect angle, local haze or cloud, or any other reason that

causes a pixel to fail the chosen tolerance tests).

Both dates possess such classifications of their pixels. The task now falls into two

parts:

(1) Pure class matching. The pure classes of Date 1, which we will label A, B,

C, etc., must be matched with the pure classes of Date 2, which we label as

A', B', C', etc. This is straightforward, because most pure pixels of Date 1

remain as pure pixels in Date 2.

16

I
II Following class matching, pure pixels that have not changed are tagged as "No

change" pixels. Pure pixels that have changed are flagged as "Change" pixels,

with the appropriate pair of class identifiers (e.g., B to C').

I (2) Partial pixel matching. A pixel that is a partial pixel (simple or complex) on

Date 1 will usually remain a partial pixel on Date 2, although the fraction of

the class types within it will normally change because of sub-pixel shifts in

pixel location.

Simple and complex partial pixels will be analyzed thus:

(1) Simple partial pixels that contain the same pixel class types on Dates 1 and 2

will be tagged as "No change" pixels.

(2) A pixel that changes from pure to simple, or simple to pure, will be tagged as3 "No change" provided that the pure pixel class type is present on both dates.

3 (3) A pixel that changes from pure to simple, or simple to pure, will be tagged as

"Change" when any pixel class type is different on the two dates.I
(4) A partial pixel on both dates that contains different pixel class types on Dates

1 and 2 will be tagged as a "Change" pixel, regardless of whether those

classes are of pure type or not.I
However, the way in which the tagging is done must be different when the pixel on

either Date I or Date 2 is a complex mixed pixel. This is necessary since a complex mixed

pixel contains material that is present only at sub-pixel level; thus with a complex mixed3 pixel, a sub-pixel shift in pixel location can be enough to convert it to a simple mixed pixel

or a pure pixel (e.g., a shift of a few meters in pixel location can take us off a road

* completely).

17

The tagging of partial pixels with different classes on Dates 1 and 2 should therefore

take one of the two forms:

(1) Simple mixed pixel, change;

(2) Complex mixed pixel, possible change.

By alarming only the second category on a screen, these pixels are examined to see if

they are border roads, large buildings, etc. If so, they are probably in reality "No Change"

pixels.

NOTE: Change detection employing this approach was not implemented under

the contract.

18

1.2 Results Using the Complement Approach

1.2.1. Geometrical viewpoint.

The mathematical techniques defined in Section 1.1 above become clearer when they

are described in geometrical terms. Before presenting the results of numerical experiments

in scene classification, we provide the geometric interpretation that makes those experiments

easier to visualize. Although both supervised and unsupervised classification experiments

were performed on this contract, the basic geometric viewpoint applies equally to both, and

the discussion is therefore provided for supervised classification only.

Consider the representation of the pixels of a scene in spectral space, with the grey

levels in each band assigned to one spectral axis. Drawing only two bands for the ease of

presentation, an example of such a pixel set is shown in Figure 5.a. Every pixel occupies a

unique location in spectral space, with its coordinates along each band axis being equal to the

grey level in that band. Although more than one pixel may be at the same location, each

pixel is at one unique location.

Usually, the display in spectral space shows clustering into a number of groups or

3blobs" with a loosely-defined center. For example, in Figure 5.a there are clearly three

main groups of pixels. The whole purpose of classification methods is to recognize such

pixel groupings, and then to place as many pixels of the scene as possible into the groups,

usually termed "classes". The success or failure of a classification algorithm is measured by

how well it places the pixels of the scene into such well-defined and separable classes.

Figure 5.b shows a spectral clustering of pixels into three classes. In this example,

the clusters are themselves well-defined, but a significant number of pixels remain outside

the clusters, i.e., they are unclassified. This is a very typical result of applying a

classification program. To classify these remaining, unclassified pixels, conventional

classification methods do one of two things: either they increase the number of groups

(classes), or they increase the size of each group by being more generous in defining

permitted group variances (i.e., the overall dimensions of the group in spectral space).

These two approaches are illustrated in Figures 5.c and 5.d.

19

I
I
I

BAND 2

x xA
x x KIx x x

x x

x x x x x x xx x x x xx
x x x x

x A x xx x x
Sx

x X
x x X
x XX X

A A
x x

x ~X
x x X Xx

A A x x • A K K

x • x x
x x
X x

xx
x x XX

RAND I

ILLUSTRATION SHOWS ONLY 2 BANDS FOR SIMPUCITY.

FIGURE 5.a: Conventional multispectral classification

Conventional multispectral classification, either supervised or unsupervised, seeks to place all scene pixels
(Figure 5.a) into a small number of groups (usually termed "classes") with defined means and small variances
(Figure 5.b). Pixels which do not readily fall into such classes, perhaps because they arc a mixture of classes,
arc accommodated in one of two ways: (a) by creating new classes (Figure 5.c) or (b) by increasing the
tolerance in existing classes (Figure 5.d).

In the case of mixed pixels, both these procedure are inappropriate. They lead either to a successive number
of classes, or to diffuse, large classes of high variance, accepting as members pixels which do not belong to
them.

I
I'
I!
I BAND 2

A A -
/ A\

/ x M
A A A

I A lAA M A-
A M A: A AA

BAND 1

ILLUSTRATION SHOWS ONLY 2 BANDS FOR SIMPUCIlY

FTGUI E 5.h

I
I
I

I BAND 2

i D /

x x

/ \/ - "K\ G
\:- (K

x x . 1

" BAND I

KK/ , K\

I K" K \. .

IA K K K

I BAND 1

I ILWSTRATION SHOWS ONLY 2 BANDS FOR SIMPUCITY.

I FICUJW 5.c

BAND 2

'A /, AA '

I A

!A .
'*' . / -

A "' / / I \
A A A.... A A/' jAA, ~
\:~ r ~ \ 'l

A*\\,A A / \K A /

BAD/

ILLSTRTIO SHWS NL 2 AND FO SIPUCTY

ITLI 5.A

However, in tackling the problem of small statistics, both these methods have a major

flaw: they tend to absorb into existing or new classes exactly those pixels, statistically small

in number compared with the rest of the scene, which may contain interesting elements such

as roads or buildings. These are pixels which it is specifically desired to keep separated from

the rest of the image, for detailed study.

In addition, Figure 5.b makes it clear that a significant number of the unclassified

pixels in the example lie close to lines that connect the centers of major pixel groups. Such

pixels are almost certainly mixed pixels, containing ground cover elements of two known

groups. Figure 6 shows that an algorithm able to deal with such mixed pixels should do a

significantly better job of classification than the "pure pixel" spectral classifier normally

used.

1.2.2 The use of spatial information.

Given a pixel that has not been classified into one of the "pure" pixel classes already

identified, one could argue that the next thing to do is to test to see if such a pixel is made

up of a mixture of classes of known pure type, i.e., a "simple mixed pixel." This will be

the case if that pixel's reflectance in each spectral band can be written as a positive linear

combination of the spectral reflectances of any of the already-known classes. Such an

approach suffers from a new problem: with many classes, the number of possible class

combinations grows extremely rapidly. For N classes, there are N(N-1)/2 class pairs to be

considered, and N(N-1)(N-2)/6 class triplets. Thus if N = 10 which is not a large number of

classes for normal classification work, we have 45 class pairs and 120 class triplets to

consider. And although the probability of being able to make any given set of pixel

reflectances as a combination of known classes grows fast, the chance that such a

combination is meaningful rapidly decreases.

What is needed is additional information that can limit the classes for consideration in

constructing the simple mixed pixels. Such information is provided by spatigl considerations.

Thus far, the classification has been made purely on the basis of spectral properties of the

pixels. However, each pixel has its own set of nearest neighbors, and the chance that a pixel

20

BAND 2

IN / XK x* * B
x x xx

x xxx x x x

x x X x x x X
X XX

xxx x

*/ \ *K*KK<KX

x~~ \
XKK.,

x : x - - Ix x : : l

x x
xx \ \K1! . \~ \

X /

I K I ,,K
x

3 x

BAND 1

ILLUSTRATION SHOWS ONLY 2 BANDS FOR SIMPUCITY

FIG;URE 6: Spatial spectral classification and the use of mixed pixels

Beginning with a small number of classes of known means and small variances, an initial classification is
pcrformed. Following this, every unclassified pixel in the scene is examined to see if it is a combination of
classcs of its neighbors. Geometrically, pixels are examined to see if they lie on or close to lines or planes
joining the means of exisiing classes, and lying within the subspace spanned by those class means.

The original classes remnaii, tiightjy defined and have low variance. Pixels which are not classified as pure or
mixed pixels become candidates as pure or mixed pixels involving an as-yet undefined class.

I" "- ,.,,, ,:,
**.I

is a combination of classes that do not occur in the pixels that neighbor it is very small.

This observation formed the basis for the approach detailed in the previous section, and

defined as the Complement Approach. Spectral/spatial, or S-squared classifiers, are

compared in the following sections with conventional spectral classifications, which are

termed S classifiers.

1.2.3 Experinents with S and S-squared classifiers.

In order to permit a large number of experiments to be performed at tolerable cost in

machine time, most runs were made on a particular sub-scene window (186 x 157 pixels

beginning at Row 325, Column 603) of a Thematic Mapper scene around Washington D.C.

This window forms one of the regions of the 2,048 x 2,048 mosaic shown in Plates 1

through 5, which are all TM data of different dates. Only the most successful or interesting

of the procedures employed on the window were applied to the larger mosaic

and only for May 1985, and May 1987.

1.2.3.1 Initial experiments.

The first experiments were performed using both supervised (maximum

likelihood) and unsupervised (Euclidean distance) classification methods. Three facts

became apparent during those first sets of computer runs.

First, the numerous different possible combinations of program parameters

such as sigma levels, fitting tolerances, and number of classes with either supervised

or unsupervised classifiers would force early decisions on some of those parameters.

Thus, although initial runs were performed using as few as two (2) and as many as

twenty-five (25) classes, the final and more systematic experiments were all done

using from 2 to 7 classes, and only three levels of fitting tolerance were explored.

Second, fully unsupervised classification was not going to be a satisfactory

approach, given the limited time and budget available. Very few pixels were classified

using the unsupervised classification program, unless either a large number of classes

or very generous class variances were used. In addition, interpretation of the classes

21

defined in the unsupervised niode was often difficult. A decision was finally made to

restrict experiments to supervised maximum likelihood classifications.

Third, initial experiments with the mixed pixel spectral/spatial (S-squared)

technique revealed one unanticipated theoretical problem with the original algorithm,

as follows: The algorithm assumed in looking for mixed pixels that two or more

different classes of the mixed pixel would be present in the pixel's neighbors. In

practice, pixels existed that were entirely surrounded by a single class of pixel

(notably water) and hence the classification of that pixel did not take place.

To allow for this possibility, a new program was developed which examines

all unclassified pixels with two or more neighbors of a single known class, and asks if

they are a mixture of that class and some other known class. If so, these pixels are

added to the category of classified mixed pixels. Note that for N classes, this

algorithm must examine (N-i) possible mixtures of pure classes.

1.2.3.2 Main experiments.

Once the spectral classification technique and appropriate number of classes

had been decided upon, and the necessary added software described above developed,

the procedure employed in all later runs of the programs was as follows:

1) Define with operator interaction an initial set of (hopefully pure) classes

within the window area, and develop the spectral statistics for each class.

2) Perform a purely spectral scene classification (S classifier), setting some

prescribed tolerance (sigma-level) for acceptance of pixels into the defined classes.

The statistical significance levels employed were 1-sigma and 3-sigma.'

3) Display the S-classification results.

'For data that follow a normal distribution, these sigma levels correspond to pixel
acceptance at the 68% probability level and the 99.74% level, respectively. It should be
noted that use of a value as high as 3-sigma almost guarantees that pixels will be accepted
into a group that do not really belong there.

22

I

4) Run the mixed pixel spectral/spatial (S-squared) classifier, iterating it until

no further pixels are classified.

5) Display the S-squared classification results, comparing them with the Step

3) results.

6) Repeat steps 1) - 5), varying the scene sigma-levels, the number of initial

classes, the tolerance of the fit, or all three.

1.2.4 Results

1.2.4.1 S-classification.

As a "base case" for comparison purposes, a stanard maximum likelihood

supervised classification was run at the 1-sigma and 3-sigma levels. This was done

for two different dates (May 1985 and May 1987). The 1-sigma case was run using

from 2 to 7 classes, since the mixed pixel runs would also be performed with 2

through 7 classes and sigma = 1. The 3-sigma case was run for 7 classes only, in

order to compare the 1-sigma S-squared classification with the 3-sigma S-

classification.

The results of these runs are shown in Tables 1 and 2, for 1985 and 1987

respectively. The following observations can be made after inspection of those

results:

(1) The conventional spectral classification with sigma = I laves most of

the scene unclassified (82% for 1985 case, 77% for 1987 case) even when 7 classes

are used. The classification success is lower with less classes.

(2) Even with sigma = 3 (where the probability that a pixel not be

assigned to a class is only .26%), the conventional spectral classification with 7

ciasses leaves 18% of the scene (1985) or 9% of the scene (1987) unclassified.

23

TABIlJ I

MAY 1985

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 24683 84.53
1 Tree 2677 9.17
2 Water 1842 6.31

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 24505 83.92
1 Tree 2677 9.17
2 Water 1842 6.31
3 Runway 178 0.61

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 24311 83.25
1 Tree 2677 9.17
2 Water 1842 6.31
3 Runway 178 0.61
4 Urban 194 0.66

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Classified 24204 82.88
1 Tree 2677 9.17
2 Water 1842 6.31

3 Runway 178 0.61
4 Urban 194 0.66
5 Veg 107 0.37

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 24144 82.68
1 Tree 2677 9.17
2 Water 1842 6.31
3 Runway 178 0.61
4 Urban 194 0.66
5 Veg 107 0.37
6 Airfield 60 0.21

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 24084 82.47
1 Tree 2677 9.17
2 Water 1842 6.31
3 Runway 178 0.61
4 Urban 194 0.66
5 Veg 107 0.37
6 Airfield 60 0.21
7 Newbare 60 0.21

May 1985, Standard Deviation = 3.0

Number Name Count Percent
0 Unclassified 5325 18.24
1 Tree 10559 36.16
2 Water 6239 21.36

3 Runway 1220 4.18
4 Urban 1594 5.46
5 Veg 3466 11.87
6 Airfield 263 0.90

7 Newbare 536 1.84

TABLE 2

May 1987

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22958 78.62
1 Tree 3755 12.86
2 Water 2489 8.52

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22856 78.27

Tree 3755 12.86
2 Water 2489 8.52
3 Runway 102 0.35

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22658 77.59

Tree 3755 12.86
2 Water 2489 8.52
3 Runway 102 0.35
4 Urban 198 0.68

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22503 77.06
1 Tree 3755 12.86
2 Water 2489 8.52
3 Runway 102 0.35

4 Urban 198 0.68
5 Veg 155 0.53

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22463 76.92
1 Tree 3755 12.86
2 Water 2489 8.52
3 Runway 102 0.35
4 Urban 198 0.68
5 Veg 155 0.53
6 Airfield 40 0.14

Maximum Likelihood, Standard Deviation = 1.0

Number Name Count Percent
0 Unclassified 22366 76.59
1 Tree 3755 12.86
2 Water 2489 8.52
3 Runway 102 0.35
4 Urban 198 0.68
5 Veg 155 0.53
6 Airfield 40 0.14
7 Newbare 97 0.33

May 1987, Standard Deviation = 3.0

Number Name Count Percent
0 Unclassified 2765 9.47
I Tree 10385 35.56
2 Water 7168 24.55
3 Runway 630 2.16

4 Urban 3258 11.16
5 Veg 3849 13.18

6 Airfield 214 0.73
7 Newbare 933 3.19

I

1.2.4.2 S-squared classification.

Tables 3 through 8 show the results of the S-squared classification, all with

sigma = 1, for 2 through 7 classes. These runs were performed for three different

values of the least squares tolerance parmeter, T = 5, 10, and 15. The value of T

can be thought of geometrically as the distance that a pixel can be "off the line"

connecting pure spectral class means, and still be accepted as a simple mixed pixel.

The results show a striking improvement in classification over the spectral S-

classification. Even with T = 5, which is a "tight" value of the tolerance, the

unclassified portion of the image is only 19% (1985) or 21% (1987). With a more

realistic value of T = 10, this goes down to 7% (1985) and 8% (1987).

The images resulting from these classifications are shown in Plates 6 through

292. In each case, the unclassified parts of the image are shown in black. These are

therefore, according to the Complement Approach, the "interesting" parts of the

image that remain for further analysis. However, it is also important that the

classification performed by the new S-squared classifier make sense, as thematic

classes. Inspection of the images shows that this is the case.

It is instructive to compare the 7-class S-classification with sigma = l and

sigma = 3 with the 7-class S-squared classification with sigma = 1 and T = 5, 0,

and 15. These are shown on Plates 9, 13, 17, 21, 25 and 29. In every case, the

runs with sigma = 1 for the S-squared classifier appear better than the corresponding

runs with sigma = 3 for the conventional S-classifier.

This is a surprising result. It indicates that, for this image at least, most pixels

are mixed pixels. Consider, for example, Plate 13. Conventional maximum

I 'hese plates and Plates 30 through 35 are provided in the body of the report reduced to a size convenient
for report binding, and are not at any precise scale. However, the same information has been separately
provided a.s contract deliverables in larger format. It is recommended that these products be used whenever
details of a particular classification result are of concern, rather than a general comparison of different methods.

24

TABU 3

May 1985

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 13604
Tree 7648
Water 7950

IMixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 10414
Tree 10150
Water 8386
Runway 252

IMixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 9496
Tree 10434
Water 8419

Runway 452
I Urban 401

Mixed Pixel, Least Squares Errorr = 5

I CLASS COUNT
Unclassified 6608
Tree 11505
Water 8437
Runway 566
Urban 479

Vegetation 1198

I Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 5826
Tree 11569
Water 8425
Runway 570
Urban 537
Vegetation 1118
Airfield 536

IMixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 5466
Tree 11574
Water 8456

Runway 600
Urban 523
Vegetation 1082
Airfield 496
Newbare 209I

TABI-E 4

May 1985

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 10076
Tree 10738
Water 8388

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 7233
Tree 12584
Water 8713

Runway 672

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 5557

Tree 13175
Water 8723
Runway 906
Urban 841

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 3247

Tree 13228
Water 8784
Runway 866

Urban 899
Vegetation 1702

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2269
Tree 13261
Water 8816
Runway 695
Urban 905
Vegetation 1506
Airfield 954

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2269
Tree 13261
Water 8816
Runway 695
Urban 905
Vegetation 1506
Airfield 954

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2149
Tree 13238
Water 8799
Runway 716
Urban 883
Vegetation 1414
Airfield 736
Newbare 338

TAB 5

May 1985

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 8387
Tree 11818
Water 8647

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 5470
Tree 13592
Water 8748
Runway 1392

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 4056
Tree 14118
Water 8759
Runway 935
Urban 1334

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 2301
Tree 13608
Water 8839
Runway 1058
Urban 1071
Vegetation 1951

Mixed Pixel, Least Squares Error = 15

CLASS COUNT

Unclassified 1565

Tree 13665
Water 8793
Runway 941
Urban 937
Vegetation 1661
Airfield 1010

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 1606
Tree 13686
Water 8793
Runway 994
Urban 876
Vegetation 1348
Airfield 807
Newbare 381

TABILE 6

May 1987

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 13808
Tree 7587
Water 7807

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 11129
Tree 9516
Water 8398
Runway 159

Mixed Pixel, Least Squares Error = 5

ICLASS COUNT
Unclassified 10484
Tree 9653
Water 8436
Runway 291
Urban 338

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 6969
Tree 10900
Water 8498

Runway 598
Urban 397
Vegetation 1528

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 6721
Tree 10861
Water 8491
Runway 552
Urban 416
Vegetation 1316
Airfield 333

Mixed Pixel, Least Squares Error = 5

CLASS COUNT
Unclassified 6232
Tree 10906
Water 8493

Runway 600
Urban 421
Vegetation 1277
Airfield 304
Newbare 360I

TABWI 7

May 1987

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 10541
Tree 10091
Water 8570

Mixed Pixel, Least Squares Error - !0

CLASS COUNT
Unclassified 7171
Tree 12458
Water 8866
Runway 706

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 5712
Tree 12830
Water 8909
Runway 976
Urban 775

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2980
Tree 12692
Water 8915

Runway 1119
Urban 717
Vegetation 2275

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2336
Tree 12819
Water 8932
Runway 937
Urban 739
Vegetation 1768
Airfield 863

Mixed Pixel, Least Squares Error = 10

CLASS COUNT
Unclassified 2308
Tree 12867
Water 8932
Runway 907
Urban 711
Vegetation 1614
Airfield 510
New'oare 480

TABUI S

May 1987

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 9147
Tree 11304
Water 8751

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 5099
Tree 13526
Water 8901
Runway 1676

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 4018
Tree 13965
Water 8946
Runway 1090
Urban 1183

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 2043
Tree 13090
Water 8971
Runway 1226
Urban 924
Vegetation 2503

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 1782
Tree 13106
Water 8957
Runway 1107
Urban 846
Vegetation 2152
Airfield 662

Mixed Pixel, Least Squares Error = 15

CLASS COUNT
Unclassified 1688
Tree 13210
Water 9015
Runway 983
Urban 818
Vegetation 1781
Airfield 422
N,,wharw 615

I

likelihood (S-classification), even with sigma = 3, cannot classify the inland body of

water. The S-squared classifier makes that classification correctly, with sigma = 1.

The full results of the S-squared classifier are not easy to represent in image

form because when a pixel is a mixture of several different classes, it is necessary to

choose one of those classes (normally the one that accounts for most of the mixed

pixel area) for the output display. Plates 30 and 31 show, for T = 10, class maps

corresponding to four different choices. These "lower-level" class maps display detail

not seen on the original output. However, it should be emphasized again that the

Complement Approach is designed to focus attention on the unclassified (black) part

of the image.

II
I
I
I
I
I
I
I
I
I

I 25

The following legend is for Plates 6 thru 35

Color Description

BLUE Water

TAN Vegetation/Trees

GREEN Golf course grass (cultivated vegetation)

MAGENTA Runway field (sparse vegetation)

YELLOW Bare dirt

RED Runway (Concrete)

CYAN Mixed Urban

BLACK Unclassified

1.2.4.3 Change detection using the S-squared classifier.

The ideal change detection algorithm for human activities should not signal

as a change between dates something that has varied only as a result of natural

processes (e.g., weather, season). Plates 32 through 35 show the results of using the

conventional S-classification for change detection between May 1985 and May 1987,

compared with the new S-squared classifier.

The S-classification with sigma = 3 shows large areas that were not classified

on either date, particularly in inland water, and other substantial areas that were

classified in 1987 only.

The S-squared classification for T = 10 and sigma = 1 shows no such general

pattern of change. Water in particular is classified correctly on both dates. In order

to determine whether the indicated change pattern of the S-squared classification is a

real one, ground truth would be needed. However, the S-squared method offers real

promise as a change detection algorithm, simply because it is a more successful

classifier of each date. The number of pixels that cannot be examined for change,
because they were not classified on one date or the other, is very small.

26

1.3 Further Experiments

The number of available parameters in conventional spectral classification is already

large. It includes the number of spectral bands, the choice of supervised or unsupervised

classification, the choice of classification methods (maximum likelihood, Euclidean distance,

parallelopipedon classifier, and others), the number of classes, and the variance (sigma-level)

for pixel acceptance. To this list, the mixed-pixel spectral/spatial S-squared classifier adds

options of its own: the number of spatial neighbors to be used, the number of classes

permitted in neighboring pixels, and the tolerance to be set in accepting or rejecting a mixed

pixel.

The current project was able to explore only a few of these alternatives. However, the

results obtained suggest that, for at least one data set, mixed pixel S-squared analysis is very

important. It is likely to prove more important yet, when the remaining unclassified pixels

are examined in more detail, since it is these pixels which in the problem of small statistics

are likely to yield the most interesting information. A conventional approach, which increases

class variances to achieve higher percentages of classification, is likely to absorb those

interesting unclassified pixels into existing classes; in other words, to throw away the pixels

of most interest, merely in order to reduce the number of unclassified pixels of the scene

(which are actually most likely to be mixed pixels of known classes, rather than

I representatives of new classes) to manageabie proportions. The S-squared classifier, by

identifying such mixed pixels from their spatial and spectral properties, removes them from

I consideration, without removing pixels that contain genuinely new and interesting

information. This is illustrated for the two-band example case in Figure 7.I
Before the above statement can be admitted as a firm conclusion, a number of

additional experiments neeA to be performed. First, comparable runs need to be made with

other data sets, preferably of a different geographical area and with ground truth available.

Second, a number of the other parameters listed above need to be run through a range of

values, rather than fixing them to one or two values as was necessary to keep the number of
experiments on this project within bounds. The algorithm has now been through its own

initial development variations, but there are still elements (e.g., mixed pixel tolerance) that

27

BADI
ILSRTO SHW4NY2RNSFRSMUIY

FIGURE~~ ~ ~ ~~ 7: Th eetoNf nnw lse

Piel hih ano b lasiid s ue r iedpies ro lase i th, knwB en n salvrac
ar cnidts obeog oncxclses r obea obiaio f o e e, nnoncls adknwIlc.Teukonmaso oeta nnw lse r eemnda h ofurc onso

vectos conectng exstin clas mca an uncassiiedpxes

need to be run over a range of values before final ones are adopted. Third, the software

needs to be developed that seeks new materials at the partial pixel level, based only on the

reflectances of pixels unclassified at the end of the existing S-squared classification.

The latter problem still needs additional analysis. As the General Approach of Section

1. 1 makes clear, when we are dealing with complex mixed pixels, there is not enough

information in a single pixel for an unknown material to be identified. Either a priori

information must be provided (as to possible signatures) or some group of pixels must be

identified, each of which is believed to possess some element of the unknown material.

However, no experiments have so far been performed to test either of these alternatives in

practice.

In addition, during the final classification runs of this project, another situation

presented itself: there may be simple mixed pixels that happen to be entirely surrounded by

pixels of some single other class. Such pixels, in the present algorithm, will never be

classified correctly, even if all the necessary pure pixel classes have been identified. There

are several possible ways to solve this problem, of which the simplest is to examine each

,inclassified pixel to see if it can be defined as a linear combination of the spectral signature

ef its neighbors and two known classes; however, no experiments have been performed to

test how well such a process works.

28

I

I1.4 Conclusions

1 1. Although the S-squared classifier has been run on only a small number of cases, it

performs far better than a standard S-classifier (spectral only) in classifying scenes at a given

Isigma-level. Quantitatively, with sigma = 1 and T = 10, the classification success rate went

in one case (1985) from 18 to 93 percent, and in another case (1987) from 23 to 92 percent.

2. If the above result is sustained for other scenes and other data types, the

conventional view of the muhi :,itral classification process should be changed. The most

common concept in use to, is that most pixels will lie within one of a few clusters in

spectral space. These clusters, or classes, correspond to materials of a particular ground

I cover, i.e., they are "pure" clusters corresponding to a single surface cover such as water,

forest, sand, etc. Geometrically, the picture is that of Figure 5.d. As mentioned earlier, the

I fact that the permitted sigma-level must be stretched to the statistically improbable value of 3

or 4 sigma in order to accommodate many pixels in a scene is a strong indication that there

is something radically wrong with such an approach.

The S-squared classification results have shown just what is wrong. A different

geometrical picture is needed. There are indeed clusters in spectral space, but these are

I small, tightly-defined clusters corresponding to a single, "pure", ground cover and having

low variance. However, the majority of the pixels in the scene do not lie within these

clusters. They lie instead in the lines, planes, and tetrahedra connecting the pairs, triplets,
and quadruplets formed among the small, tightly-defined clusters. Geometrically, the correct

picture is not that of Figure 5.d, it is that provided by Figures 6 and 7.

This new geometric insight is also the secret to solving the problem of small statistics.

Expanding the size of clusters, as is done in conventional S-classification by increasing the

permitted sigma-levels (variances), absorbs statistically insignificant but practically important

pixels of unidentified ground cover into existing classes, where they are lost. The S-squared

classification of the Complement Approach leaves precisely these unclassified pixels for

further analysis, having removed all the well-defined pure pixels and simple mixed pixels

29

I
I from consideration. The S-squared approach is therefore recommended whenever the

I consideration of small statistics is important for successful scene analysis.

I
I
I
I
I
I

I
I
I 3

2. MULTISPECTRAL ANALYSIS USING THE FEATURE VECTOR APPROACH

2.1 Background

I Since the first computer processing of multispectral images, dating back to

aircraft scanners in the 1960's, linear combinations of bands have been explored to find

I "Feature Vectors" in multiple dimensional spectral space. Such vectors constitute directions,

projected along which a particular type of scene ground cover is easily separated from the

rest of the image content. The best known feature vector approaches are perhaps those of

eigenvector (principal component) analysis, chlorophyll normal analysis, and tasseled cap

analysis. Vectors have been sought to discriminate iron oxide and varnishes in geology,

vegetation in agriculture, water depth in bathymetry, etc.

Analysis of images at EarthSat prior to 1988 often suggested the existence of a

I projective feature vector which discriminated man-made scene disturbances (features) from

natural ground covers. Such a vector appeared to discriminate concrete, asphalt, building

materials, and newly disturbed areas, from natural land cover and vegetation. In addition,

differencing man-made feature vectors derived from multitemporal imagery appeared to be an

effective means for identifying urban expansion. However, this feature vector was not scene

independent. In this project, the possibility of deriving a stable (scene independent) feature

vector was explored and the utility of the method for both scene analysis and change

detection was evaluated.

2.2 Method of analysis

Five Thematic Mapper mosaics of parts of the Washington, D.C. area (see

Plates 1-5) were employed in the analysis. From these scenes, a single composite image was

created containing representative samples. A variety of linear combinations of the 6 TM

bands (i.e., a variety of projection directions) were formed interactively, and evaluated for

their ability to discriminate man-made features. The evaluation was performed subjectively

by analysts familiar with the Washington, D.C. Metropolitan Area and environs. Initial

results indicated that the best vectors were scene dependent. In other words, although useful

I vectors could be developed for each scene date, no single vector could be found which

3
31

provided good discrimination on all images. The most likely cause of variation appeared to

be changes in scene radiometry due to seasonal variations and atmospheric effects.I
In an attempt to isolate and perhaps remove the factors causing date-to-date variation

in the optimal feature vector, all imagery was normalized to the May 1985 image. The

normalization was accomplished first by picking training sites which should be little affected

I by changes in vegetation or soil moisture (e.g., asphalt and concrete). A linear regression

between training site statistics was then performed to derive a linear (gain and offset) look up

I table which could be used to adjust the image radiometry to match that of the May 1985

scene. These normalized images were then used in a second performance of the interactive

I linear combination analysis. Results indicated that the normalization did eliminate the effect

of changes in solar illumination, detector calibration, and plant processing. However, the

effects of atmospheric variation from image-to-image was not removed. The August 1985

image was particularly affected by atmosphere.

On the basis of these preliminary results, it was decided that the effects of the

atmosphere, and also of intensity and vegetative vigor, needed to be removed prior to

seeking a feature vector for human activities, if any scene independent result was to be

obtained.

A step by step procedure was employed. (See Appendix 3 for a mathematical

summary.) First, an intensity vector was derived from C 'atures such as asphalt and concrete.

By projecting parallel to this vector, a set of five vector. remained (Thematic Mapper

I spectral space here was 6-dimensional since the thermal channel was not employed). In the

remaining 5-space, a vegetation vector was then sought. This vector was identified using

vegetated and non-vegetated features, and also features with varying degrees of vegetative

vigor. By projection parallel to this vector, a 4-space was generated, orthogonal to both

intensity and vegetation. Next, in the remaining 4-space, an atmosphere vector was

identified by examination of areas showing varying degrees of atmospheric effect. Projection

I parallel to this vector reduced the remaining spectral space to one of three dimensions. In

the final step, man-made and natural training areas were used in the residual 3-space to

3
32I

derive a feature vector discriminating man-made from natural ground covers. Of the

directions orthogonal to this feature vector in the 3-space, one appears to correspond
approximately to surface wetness, and the final vector has no identifiable physical

correlation.

2.3 Results

The final vector coefficients for feature vectors corresponding to intensity,
vegetation, atmosphere, man-made activities, wetness, and residual variation are shown in

the following table:

1ABLE II.1

VariabLe Gain Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 Offset

Intensity 1.1 +.407 +.285 +.447 +.407 +.550 +.292 -57

Vegetation 1.9 -.193 -.137 -.217 +.913 -.222 -.119 +68

Atmosphere 4.6 +.777 -. 077 -. 569 +.000 +.062 -. 252 -119

Man-Made 6.9 -.216 +.131 +.113 +.000 +.451 -.848 +165
Wetness 2.8 +.342 +.294 +.501 +.032 -.662 -.327 +99

Unnamed 23.5 -.174 +.889 -.408 +.000 -.053 +.099 +132

The images resulting from projection in the directions of vegetation, intensity,

atmosphere, and man-made features are shown for each of the five processing dates in Plate

36.

The analysis of this project suggests that there is indeed a man-made feature vector

which is independent of the main radiometric variations among different dates. This feature

vector is a good discriminator of man-made land cover changes.

The value of the feature vector in change detection has so far proved inconclusive.

There are other factors which affect the detection of man-made features. In particular,

because many features are small, scene to scene registration may be required of sub-pixel

accuracy.

33

2.4 Conclusions

On the basis of the experiments conducted here, 6-band Thematic Mapper data does

permit the identification of a feature vector corresponding to human activities, which can be

made independent of scene acquisition conditions. There appear to be two limiting factors to

the value of this approach. The first is regional variability in building materials, which will

cause changes to the preferred vector. We presently believe that building materials in North

America are sufficiently standardized that a vector can be developed through the United

States and Canada. New experiments would be needed to explore the effect of building

materials in Europe and other continents.

Second, analysis of this type will be aided materially by higher spatial resolution

(decreasing sensitivity to sub-pixel effects) and by additional spectral bands (which will offer

a higher order subspace within which the man-made feature vector can be interactively

sought).

As one interesting side observation, it should be noted that the vegetation vectors

found here from Thematic Mapper imagery have negative coefficients in Band 5. This result

appears contrary to vegetation/greenness vectors developed by other vectors.

34

I
I
I
I
I
I
I

APPENDIX 1

I
* SOURCE CODE LISTING AND FLOW LOGIC

FOR PROGRAMS DEVELOPED UNDER THIS CONTRACT

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I SOURCE CODE FOR MAXIMUM LIKELIHOOD

SPECTRAL CLASSIFICATION

I
I
I
I
I
I
U
I
I
I
I
I

Include file for parm.h for statictical classifier

struct {
int nclass;
int nband;
int bndnum[MAXBND];
char clsnam[MAXCLS][32];
int table[MAXBND][5 12];
float incov[MAXCLS][MAXBND] [MAXBND];
float const[MAXCLS];
float mean4[MAXCLS][MAXBND];
float maxdist;

}parm;

Main routine for statistical classifier

#include <memory.h>
#include <malloc.h>
#include "estypes.h"
#include "esvalid.h"
#include "eserror.h"
#include "version.h"

#define PARALLEL 0
#define EUCLID 1
#define MAXLIKE 2

main(argc, argv)
int argc;
char *argv[];

int ihandle, ohandle; /* Image handles */
HEADER *inhdr, *outhdr; /* Image header pointers */
Pixel **buff; /* Pointer to input buffers '/
Pixel *obuf; /* Pointer to output buffer /
int rowl, nrows; /* 1st row, # of rows
int coll, ncols; /* 1st col, # of cols */
unsigned
int nclass, /* # of classes */

ntable, /" # of tables required '/
cmbands; /* # of common bands */

int imbands; /" # of images bands '/
int 'iband; /' Pointer to image bands '/
int stbands; /* # of bands in stats file */
int *sband; /* Pointer to stats bands '/
int *cband; /' Pointer to common bands "/
int *min, *max; /* Class mins/maxes */
char *name; /' Class names '/
int 'count; /* Class counts '/
int 'number; /* Class numbers */
float *mean; /* Class mean vectors '/
float 'var; /* Class covariance matrices '/
mt *table; /' Parallelepiped tables
float 'ivar; / Inverted covar matrices '/
float 'Indet; /' Constant portion of max

likelihood equation
char iname[1291, oname[1291; /' Image names '/
char sname[129], /' Stats file name

I char lname[129]; /' List file name '/
FILE 'fp, /' Stats file pointer '/I

Main routine for statistical classifier

lp; / List file pointer */

int method; /* Classification method */
float *maxdist; /* Max allowable distance */
int class, maxclass;
int band, row;
int total, unclass, device;
float xnum;
char *calloco;
static char *menu[4] - {"Parallelepiped",

"Euclidean distance",
"Maximum Likelihood",
NULL};

title(argc, argv, "Supervised classification", VMAJOR, VMINOR);
/,

* Open input image

while (TRUE){
Iiname[O] = 0;

ihandle = open image("Enter input image name", iname, "img",

I if (ihandle < 0) 1O READ,-1);

goto done;I /"
I Make sure there's more than 1 band in imageSI

iband = getbands(ihandle, &imbands);
if (iband = = NULL)

goto done;
if (imbands > 1)

break;
putstring("Selected image has only one band\n\n");

I close_image(ihandle);

/,
I * Get processing window

*/
clearscreen();
if (selectwind(ihandle, "Select Processing Window", &rowl, &nrows,

&coil, &ncols, 1))
goto done;

I Open stats file.

* Main routine for statistical classifier

clear screeno;I new -ext(iname, "stats", sname);
while (TRUE)

fp = open_text("Enter stats file name", sname, "stats",
10_READ);

if (fp ==NULL)

goto done;
if (read_stats(fp, &stbands, &sband, &nclass, &number, &name,

&count, &min, &max, &mean, &var))

(void)fclose(fp);
sname[O] = 0;
continue;

SClear out the class counters

/(void) me mset((rhar *)count, 0, (int)nclass~sizeof(int));

SGet list of common bands

blist(iband, imbands, sband, stbands, &cband, &cmbands);
if (cmbands > 1)I break;
put_string("Iniage and stats have < 2 bands in common\n\n");
free((char *)var);Ifree((char *)mean);
free((char *)ma-x);
free((char *)min);Ifree((char *)count);
free((char *)name);
free((char *)number);Ifree((char *)sband);
free((char *)cband);
(void)fclose(fp);

'Prompt for bands to use

if (which bands(cband, &cmbands))
goto done;

Main routine for statistical classifier

* Compress stats to eliminate any unused bands

comp_stats(sband, stbands, cband, cmbands, nclass, mean, var);

Get classification method

clearscreenO;
if (ask_menu("SELECT CLASSIFICATION METHOD", menu, &method, 0))

goto done;
method--; /* Make 0 relative */

putstring("\n\n\n");

* Get max allowable distance for each class.,/

maxdist = (float *)malloc(nclass*sizeof(float));
if (maxdist = = NULL)

goto badalloc;

clearscreen();
if (method = = MAXLIKE)

putstring("\n\nNOTE: Maximum distance will be normalized by\n");
putstring("sqrt(nbands) so that a distance of 1 will yield\n");
put string("approximately 66%% of training pixels classified.\n\n");

if (getdist(nclass, cmbands, var, maxdist, name))
goto done;

* Make parallelepiped tables

ntable = (nclass + 31)/32;

table (int *)calloc(ntable* 256* cmbands, sizeof(int));
if (table = = NULL)

goto badalloc;

maketable(method, table, nclass, cmbands, maxdist, mean, var);

* If maximum likelihood, set up inverted covariance matrices
* and compute natural log of the determinant of the covariance
* matrix for each class
5/if (method = = MAXLIKE)

{

I

* Main routine for statistical classifier

Indet = (float *)malloc(nclass*sizeof(float));
if (Indet = = NULL)

goto badailoc;
ivar = (float *))mallIoc(ncl ass* cmbands * crnbands *s izeof(fl oat));3 if (ivar = = NULL)

goto badalloc;
if (setup max(nclass, cmbands, var, Indet, ivar, number))

goto done;

device = 3;
clear screenO;
if (ask -list("\nSelect device for summary listing",

"terminal,file,both", &device, 1))I goto done;
if (device > 1)

new -ext(iname, "lis', aInae);
up = open_text("\nEnter name for list file", Ine, "lis",

10 WRITE);I if (lp ==NULL)

goto done;

*Open output irTiage

I /oname[O] = 0;
ohandle = open_image("Enter output image name", onaine, "img",

if (hande 0_OWRITE, -1);

if (hdl et~edriad 0)0)

goto done;
inhdr = get_header(handle, 0);
if (inhdr = = NULL)

goto done;

wndw header(outhdr, inhdr, riwl, nrows, coil, ncols, 1, 1);
outhdr->num bands = 1;
outhdr->band[0].band-num = 1;

I Determine maximum class number

/for (class = maxciass = 0; class < nclass; class+ +)

if (maxciass < number[class])

Main routine for statistical classifier

maxclass = number[class];
outhdr- >maxclass = maxclass;
if (writeheader(ohandle))

goto done;/,
* Allocate space for input buffer pointers
S/

buff = (Pixel **)malloc(cmbands*sizeof(char $*));

if (buff = = NULL)
goto badalloc;/*

* Start classifying
./

if (setbands(ihandle, cmbands, cband))
goto done;

if (setbands(ohandle, 1, &outhdr- >band[0].band_num))
goto done;Is

* Process each line

putstring("\n");
for (row = rowl; row < (rowl + nrows); row+ +)
{

countdown(row, rowl, nrows);
/5

* Read each band
,/

for (band = 0; band < cmbands; band+ +)
{

buffiband] = getimage(ihandle, cband[band], row);
if (buff[band] = NULL)

goto done;
buff[band] + = coil - inhdr- > colstart;

/5

* Get output buffer
,/

obuf = putimage(ohandle, 1, row);
if (obuf = = NULL.)

goto done;
/5

* Call appropriate subroutine
s/switch (method)

Main routine for statistical classifier

case PARALLEL:
parallel(buff, obuf, ncols, cmbands, table, ntable,

number, count);
break;

case EUCLID:
euclid(buff, obuf, ncols, cmbands, table, ntable, number,

mean, count, maxdist);
break;

case MAXLIKE:
maxlike(buff, obuf, ncols, cmbands, table, ntable, number,

mean, ivar, lndet, count, maxdist);
break;

put string('\n");

*List stats

for (class = total = 0; class < nclass; class + +)
total + = count[class];

unclass = nrows~ncols - total;
xnum = (float) (nrows *ncols)/ 100.;
clear-screen();
print_list(device, Ip,

"Number Name Count Percent\n");
print-list(device, Ip, "%4d Unclassified%12d%11.2f\n",

0, unclass, (float) unclass/xnu m);
for (class = 0; class < nclass; class+ +)

print list(device, Ip, "%4d %- 16s%8d%1I1.2f\n", class+ 1, name,
cou nt[class], (float)count[class]/xnum);

name + = 17;

if (device & 1)
(void) pauseo;

done:
closci mage(IO ALL);
exit(ioerroro);

badall oc:
set error(E_MALLOC);
goto done;

Function which-bands for statistical classifier

#include "esvalid.h"
#include <stdio.h>
#include <malloc.h>

int which bands(list, nband)

*Choose bands from list of common bands

int *list; /* List of common bands *
int *nband; /* Number of common bands *

int *tlist, /* Pointer to temp list *
ntouse,
min = 2;

char cbu[8 1],
*allocateo;

*If only two common bands, return

if (*nband < 3)
return (0);

*Allocate temporary list and copy the list

tlist =(mnt *) allocate(*nband * sizeof(int));
if (tlist = = NULL)

return (1);

(void) memcpy(tlist, list, *nband~sizeof(int));

*Build prompt

clear screeno;
num-list(list, *nband, cbuf, 81);
put int(*nband, "\n\nlmage and stats have %d bands in common\n");
put string("Bands are numbered)

put string(cbuf);
put string("\n\n");

(void) sprintf(cbuf,
"Enter the number of bands to be processed (%d-%d)',
2, *nband);

min = 2;

3 Function which-bands for statistical classifier

ntouse = *nband;
if (ask_int(cbuf, &ntouse, 1, 1, VGEMIN I VLEMAX, &min, nband))

return (1);

Iif (*nband > tue

if (ask-int("\nEnter band numbers to use", list, ntouse, 0,
..(*nband), tlist, NULL))

return (1);
*nband = ntouse;

isort(list, ntouse, 0);
return (O)ndx

Function make-table for statistical classifier

#include <math.h>

#define EUCLID 1
#define MAXLIKE 2

void make_table(method, table, nclass, nband, nstdv, mean, var)/*
* Make the parallelepiped tables. Each table has a 256 element
* lookup for each band which describes the parallelepipeds for
* 32 classes. The 1st table describes classes 1-32 with class
* I corresponding to the sign bit of each table entry and class
* 32 corresponding to the low order bit. The bits are set
* according to whether the parallelepiped for a class contains
* the corresponding grey level for that band.

int method;
int *table; /* Pointer to the tables */
int nclass; /* Number of classes */

int nband; /* Number of bands */
float *nstdv; /* Size of I lepiped in terms

of # of std deviations about mean
float *mean; /* Mean vectors */
float *var; /* Covariance matrices */

unsigned int mask; /* Bit mask for class */
int band, class, grey;
int min, max;
int *tptr; /* Pointer to current table set */
float size;
float maxstdv, stdv, *vptr;

mask = 0x80000000;

for (class = 0; class < nclass; class+ +)
{

For Euclidean distance, set all variances to the max band variance.

switch (method)

case EUCLID:
maxstdv = 0.;
vptr = var;

Function make-table for statistical classifier

for (band = 0; band < nband; band+ +

I {
if (maxstdv < vptr[band])

maxstdv = vptr[band];

vptr + = band + 1;
}
maxstdv = sqrt(maxstdv);
vptr = var;
for (band = 0; band < nband; band+ +)
{

vptr[band] = maxstdv;
vptr + = band + 1;

}
break;

case MAXLIKE:
nstdv[class] *= sqrt((double) nb.id);
break;

}
for (band = 0; band < nband; band+ +)
{

stdv = sqrt(var[band]);
size = (int)(nstdv[classl*stdv + 0.5);
min = (int)(mean[band] - size);
if (min < 0) min = 0;
max = (int)(mean[band] + size);
if (max > 255) max = 255;
for (grey = min; grey < = max; grey+ +)

tptr[grey] I = mask;
var + band + 1; /* Point to next line of matrix */
tptr + = 256; /* Point to next band of table */I}

mean + = nband; /* Point to next mean vector */
mask > > = 1; /* Update mask, if 0 then reset */
if (!mask)
{

mask = 0x80000000;
table + = nband*256;

}
switch (method)
{
case EUCLID: /* Break intentionally omitted */

nstdv[class] *= maxstdv;
case MAXLIKE:

nstdv[class] *= nstdv[class];

I
* Function make table for statistical classifier

break;I }
}I }

I
I
I
I
I
I
I
I
I
I
I
I
U
I
I

Function parallel for statistical classifier

#include "estypes.h"

void parallel(buffobufncols,nbands,table,ntable,number,count)

S parallel - Classify a single line using a parallelepiped
S algorithm

Pixel *buffl; /* Input buffer pointers */
Pixel obuq]; /* Output buffer */
int ncols; /* Number of columns per line */
int nbands; /* Number of image bands */
int *table; /* Pointer to I epiped tables */
int ntable; /* Number of I epiped tables */
int number[]; /* Class numbers */
int count[]; /* Pointer to class counters */

int pxl; /* Pixel index */
int pixel; /* Pixel value "/
int band;
unsigned int class;
unsigned int tbl; /* Bit table base index /
union { /* Parallelepiped bit mask */

unsigned int umask; /* unsigned for logical shifting */
int mask; /* signed for testing sign bit */

} bitmask;
int *curtab; /* Pointer to current table */

1 Each bit table contains info for 32 classes with one bit

* assigned to each class. The pixel grey levels for each band are

* used to index and select a bit mask for each band. When these are
all logically ANDed together any bits which remain set represent

* classes to which the pixel may belong.

* This loop classifies one pixel per pass
8/

for (pxl = 0; pxl < ncols; pxl + +) {

* This loop cycles through all bit tables to perform parallelepiped
classification8/

curtab = table;
for (thl = 0; tbl < ntable; tbl + +) {

class = tbi < < 5; /* Base class # for table /

Function parallel for statistical classifier

pixel = buff[O][pxl];
bitmask.umask = curtab[pixel];
curtab + = 256;

/,
* AND all bit masks together

for (band = 1; band < nbands; band+ +) {
pixel = buffqband][pxl];
bitmask.umask &= curtab[pixel];
curtab + = 256;

Look for bits left on.SI
while (bitmask.umask) {

if (bitmask.mask < 0) {

* Sign bit is on. This is the class
Store class value in output buffer and increment
histogram counterSI

obuf[pxll = (Pixel)number[classl;
count[class] + +;
goto nextpix;

/* End of if (bitmask.mask < 0) */

* Shift next bit into sign position. Use unsigned
* version to insure a logical rather than arithmetic
* shift.
,/

bitmask.umask < < = 1;
class+ +; /* Increment class number 5/

} /* End of while (bitmask.umask) */
} /* End of for (tbl /
obuflpxlj = 0;

nextpix:
continue;

} /* End of for (pxl /

I}

3 .Function euclid for statistical classifier

#include <malloc.h>
#iniclude "estypes.h"
#include "eserror.h"

void euclid(buffobufncols,nbands,table,ntable,number,mean,
count,maxdist)

euclid - Classify a single line using a hybrid parallelepiped/
* Euclidean distance algorithm

I */Pixel *bufql; /* Input buffer pointers */
Pixel obuf[]; /* Output buffer */
int ncols; /* Number of columns per line */
int nbands; /* Number of image bands */
int *table; /* Pointer to I lepiped tables */
int ntable; /* Number of I epiped tables */
int number[]; /* Class numbers */
float *mean; /* Pointer to class means
int count[]; /* Pointer to class counters */
float *maxdist; /* Maximum euclidean distance '/

int pxl; /* Pixel index */
int band;
unsigned int class;
unsigned int tbl; /* Bit table base index */
union /* Parallelepiped bit mask */

unsigned int umask; /* unsigned for logical shifting */
int mask; /* signed for testing sign bit */

} bitmask;
int best; /* Current "best" class */
static int *pixel = NULL; /* int version of pixel values '/
static float *rpix; /* float version of pixel values '/
float iiindst; /* current minimum distance */
float dist; /* Euclidean distance from class mean
float diff;
int *curtab; /* Pointer to current table */
float *curmean; /* Pointer to current mean vector S/

* On the 1st pass, allocate memory for pixel vectors

if (pixel = = NULL) {
pixel = (int *)malloc((unsigned)nbands*sizeof(int));
if (pixel = = NULL)

goto badalloc;I

Function euclid for statistical classifier

rpix = (float *)malloc((unsigned)nbands*sizeof(float));
if (rpix = = NULL)

goto badalloc;| /.}
* Each bit table contains info for 32 classes with one bit
i assigned to each class. The pixel grey levels for each band are

* used to index and select a bit mask for each band. When these are
* all logically ANDed together any bits which remain set represent
* classes to which the pixel may belong.

I/

* This loop classifies one pixel per pass*/
for (pxl = 0; pxl < ncols; pxl + +) {

* Convert pixel values to int and float
,/

for (band = 0; band < nbands; band+ +) {
pixel[band] buff[band][pxl];
rpix[band] = pixel[band];I /

Initialize to no class found.

best = -1;
mindst = 9999999.;

I This loop cycles through all bit tables to perform parallelepiped

* classification

/ curtab table;
for (tbl = 0; tbl < ntable; tbl+ +) {

class = tbl < <5; / Base class # for table */
bitmask.umask = curtab[pixel[O]];
curtab + = 256;

* AND all bit masks together

,/ for (band = 1; band < nbands; band + +) {
bitmask.umask &= curtab[pixel[band]];
curtab + = 256;

/5

Function euclid for statistical classifier

* Look for bits left on.
,/

while (bitmask.umask) {
if (bitmask.rr .sk < 0) {

• Bit is on. Compute Euclidean distance
* * and compare to current minimum.

S/
curmean = mean + class*nbands;
diff = rpix[O] - curmean[O];
dist = diff*diff;
for (band = 1; band < nbands; band+ +) {

diff = rpix[band] - curmean[band];
dist + = diff*diff;

}

• Compare to max allowable Euclidean distance
S/

if (dist < = maxdist[class]) {

* Compare to current min.

if (dist < mindst) {
mindst = dist;
best = class;

}

1* } /* End of if (bitmask.mask < 0) */

* Shift next bit into sign position. Use unsigned

version to insure a logical rather than arithmetic
• shift.

bitmask.umask < < = 1;
class+ +; /* Increment class number */

/* End of while (bitmask.umask) *I
/* End of for (tbl

I-
Stoe class value in outpt buffer and increment

I * histogram counter

if (best > =/0)
obuqpxl] = number[best];
count[best] + +;I

Function euclid for statistical classifier

else
obuflpxl] = 0;

S/* Enidof for (pxl=
return;

badalloc:
set error(E_MALLOC);
exitioerroro);

I Function setup-max for statisticj classifier

#include <stdio.h>I#include <math.h>
#include <malloc.h>

i #include "eserror.h"

int setupmax(nclass, nbands, var, const, ivar, number)| /"
Setup for maximum likelihood classification.

1) Convert covariance matrices from lower triangle
* storage to rectangular storage and invert them.

2) Compute constant part of probability equation for
* each class. That is log(determinant)
S/

int nclass; /* Number of classes */
int nbands; /* Number of bands 2/

float *var; /* Covariance matrices (lower triangle 2/

float const[]; /* Constants */
float *ivar; /* Inverted covariance matrices

(stored in rectangular form) 2/

int *number; /* Class numbers 2/

int class, band, band2;
double *rvar; /* Rectangular version of covar
double determ; /* Determinant of covariance matrix */
double *vv; /* Temp storage */
int *indx; /* Temp storage */
int idx, icode, nelem;

nelem = nbands*(nbands + 1)/2;
/,

* Allocate some temp storage
*/

rvar = (double *)malloc((unsigned)nbands*nbands*sizeof(double));
if (rvar = = NULL)

goto badalloc;

vv = (double *)malloc((unsigned)nbands*sizeof(double));
if (vv = = NULL)

goto badalloc;

indx = (int *)malloc((unsigned)nbands*sizeof(int));

if (indx -- = NULL)
goto badalloc;

Function setup max for statistical classifier

for (class = 0; class < nclass; class+ +, var + = nelem)

*Convert covar to double rectangular

fo bn d ;bad<Iad;bn++

for (band =id = 0; band < band; band+ +)

rvar[band'nbands+band2] = rvar[band2*nbands +band]
var[idx + +1

if (var[idx] < = 0.0)
varfidxl = 1.0;

rvar[band*(nbands+ 1)] = var[idx+ +];

*Compute determinant

mdet_(rvar, &nbands, &determ, inx, wv, &icode);
if (icode)

set error(ELOGIC);
exiT(ioerroro);

*Compute log of determinant

I Sifj (determ < =0.0)

put_string("Error in class %d covar matrix\n",
number[class]);

put string("Determinant = %f\n", determ)
put string("Determinant reset to le-10\n")
determ =le-lO;

const[class] =log(determ);

*Convert covar to double rectangular again because it was
*destroyed by mdet.

fo bn d ;bad</ad;bn++

for (bad =id = 0; band < bnd; bsand+ +)

Function setup max for statistical classifier

rvar[band*nbands+band2l = rvar[band2*nbands +band]
var[idx + + 1;

rvar[band *(nbands + 1)] = var~idx + +;

*Invert the covariance matrix

matinv_(rvar, &nbands, indx, &icode);
if (icode)

put error("Singular matrix (setup max)");
set-error(E LOGIC);
exit(ioerrorO));

*Transfer to output matrix in single precision form

for (idx = 0; idx < nbands~nbands; idx+ +)
ivar[idxl = rvar[idx];

ivar + = idx;
} /* End of class loop 5

free((char *)indx);
free((char *)vv);
free((char *)rvar);
return (0);

badalloc:
set-error(EMALLOC);
return (1);

Function maxlike for statistical classifier

#include <malloc.h>
#include "estypes.h"
#include "eserror.h"

void maxlike(buff, obuf, ncols, nbands, table, ntable, number, mean,

ivar, const, count, maxdist)
/,

* maxlike - Classify a single line using a hybrid parallelepiped/
* maximum likelihood algorithm

Pixel *bufq], /* Input buffer pointers */
obuf; / Output buffer */

int ncols, /* Number of columns per line */
nbands, /* Number of image bands */
table, / Pointer to I lepiped tables */
ntable, /* Number of I lepiped tables */
number, / Class numbers */
count; / Pointer to class counters */

float *mean, /* Pointer to class means */
ivar, / Pointer to inverted covar matrices */
const, / Pointer to class constants */
maxdist; / Maximum normalized distance */

int pxl; /* Pixel index */
int band;

unsigned int class;
unsigned int tbl; /* Bit table base index */
int row, col;
union
{ /* Parallelepiped bit mask */

unsigned int umask; /* unsigned for logical shifting 2/

int mask; /* signed for testing sign bit 2/

} bitmask;
int best; /* Current "best" class */
static int *Pixel = NULL; /* int version of pixel values
static float *rpix; /* float version of pixel values */

static float *diff; /* pixel values minus band means
float minprob; /* current min negative probability */
float dist; /* normalized distance from mean
float sum, prob;
int *curtab; /* Pointer to current table */
float *curmean; /* Pointer to current mean vector */
float *curvar; /* Pointer to current covar matrix */
float *cvar; /* Temp covar pointer */

IFunction maxlike for statistical classifier

On the 1st pass, allocate memory for pixel vectors
5/

if (pixel = = NULL)

pixel (int *)malloc((unsigned)nbands*sizeof(int));
if (pixel = = NULL)

goto badalloc;
rpix = (float *)malloc((unsigned)nbands*sizeof(float));
if (rpix = = NULL)

goto badalloc;
diff = (float *)malloc((unsigned)nbands*sizeof(float));
if (diff = = NULL)

goto badalloc;}I /"

* Each bit table contains info for 32 classes with one bit
assigned to each class. The pixel grey levels for each band are

* used to index and select a bit mask for each band. When these are

all logically ANDed together any bits which remain set represent
classes to which the pixel may belong.

/-5
* This loop classifies one pixel per pass

*/for (pxl = 0; pxl < ncols; pxl+ +)
{

I Convert pixel values to int and float
,/

for (band = 0; band < nbands; band+ +)

pixel[band] = buffqband][pxl];
rpix[band] pixel[band];

/5

j Initialize to no class found.

best = -1;
minprob = 999999999.;

* This loop cycles through all bit tables to perform parallelepipedI classification
5/

Function maxlike for statistical classifier

curtab = table;
for (tbl = 0; tbl < ntable; tbl+ +{

class = tbl < < 5; /* Base class number for table */
bitmask.umask = curtab[pixel[0]];
curtab + = 256;

/,
* AND all bit masks together

for (band = 1; band < nbands; band+ +)I {
bitmask.umask & = curtab[pixel[band]];
curtab + = 256;I }

I,

* Look for bits left on.

while (bitmask.umask)
{

if (bitmask.mask < 0)
{

I,
Bit is on. Compute multivariate probability
and compare to current minimum. First compute

I difference vector from pixel to class mean

curmean = mean + class*nbands;
curvar = ivar + class*nbands*nbands;
for (band = 0; band < nbands; band+ +)

diff[band] = rpix[band] - curmean[band];

I Now compute transpose of difference vector times
* inverted class covariance matrix times difference

* vector. Result is a scalar.

dist = 0.;
for (row = 0; row < nbands; row+ +)
{

cvar = curvar;
sum = difq0l*cvar[0];
for (col = 1; col < nbands; col+ +)
{

cvar + = nbands; /* Next column */
sum + = diffqcol]*cvar[0];

FUnction maxlike for statistical classifier

}
dist + = sum*diffqrow];
curvar+ +; /* Point to next covar row */

* Compare to max allowable normalized distance

1 if (dist < = maxdist[class])
{

OK, compute minus twice the natural log of multivariate
* probability and compare to current min.

(Forget the 2 *pi **n/2 part)

prob = const[class] + dist;
I if (prob < minprob)

{
minprob = prob;p best = class;

}

Shif /* End of if (bitmask.mask < 0) */

* Shift next bit into sign position. Use unsigned
* version to insure a logical rather than arithmetic

shift.
,/

bitmask.umask < < = 1;
class+ +; /* Increment class number */

/* End of while (bitmask.umask) */
/* End of for (tbl */

* Store class value in output buffer and increment

* histogram counter

if (best > = 0)I {
obufqpxl] = number[best];
count[best] + +;

else
obufqpxll = 0;

/* End of for (pxl .
return;

Function maxlike for statistical classifier

badalloc:
set error(EMALLOC);
exit(ioerroro);

I

I Function get dist for statistical classifier

#include <math.h>
#include <stdio.h>
#include "esvalid.h"

I int get_dist(nclass, nband, var, maxdist, name)
/*

* Get max distance for classification in terms of # of std

• deviations about the mean. Allow user to enter a single
• distance to use for all classes or to enter distances

individually by class

int nclass, /* # of classes */
nband; /* # of image bands */

float *var, /* Covar matrices (lower triangle) */
maxdist; / Returned max dist */

char name [][17]; /* Class names */

int individ, /* Get individual distances ? */
class, /* Class index */
band, /* Band index */
nelem; /* # elements per cov matrix */

float *vptr, /* Pointer into covariance */
min = 0.0;

if (askquery("Specify maximum classification distances by class",
&individ, 0))

return(1);

if (individ)
{

nelem =(nband + 1)*nband/2;
for (class = 0; class < nclass; class+ +)
I

vptr = &var[class*nelem];I'Print class band std deviations

put_string("\nBand std. deviations for class %d (%s):",
class+ 1, name[classl);

for (band = 0; band < nband; band+ +)

putstring(" %.lf', sqrt(vptr[band]));
vptr + = band + 1;

}
I

Function g~et dist for statistical classifier

put_string("\n");3maxdist[class] =(class) ? maxdist[class-1I 3.0;
if (ask_float(

"Enter max dist in std. deviations for this class",3 &maxdist[class], 1, 1, VGTMIN, &min, (float *)NULL))
return(1);

else

I maxdist[0] =3.0;
if (ask -float(

"Enter max dist in std. deviations for all classes",I maxdist, 1, 1, VGTMIN, &min, (float *)NULL))
return();

for (class =1; class < nclass; class+ +)Imaxdist[class] maxdist[0];

} e u n()

I
I
I
I
I
I
I SOURCE CODE FOR MIXED PIXEL CLASSIFICATION

I
I
I
I
I
I
I
I
I
I
I
I

Include file defs.h for mixed p2ixel classifier

#define MAXCLS 4
#define MAXNBR 4
#define NULLCLASS 255

I#define max(x,y) (((x) > (y)) ? (x) (y))
#define min(x,y) (((x) < (y)) ? (x) (y))

Iextern int iterateo,
Isfito,I clslineo;

Main routine for mixed pixel classifier

#include "estypes.h"
#include "eserror.h"
#include "esvalid.h"
#include "defs.h"
#include "version.h"
#include <math.h>

main(argc, argv)/,
This program is a "mixed pixel" locator. It takes as input
Th1) A multi-band image

* 2) A single or multi-band class map.

3) A statistics file containing info about each class in the
class map. Only the mean vector is used from this file.

* The program attempts to classify previously unclassified pixels
* which are adjacent (using 4-way connectivity) to classified
* pixels by computing linear weights of the surrounding class means
* which could account for the observed spectral values of the pixel.
'/

int argc;
char *argv[];

HEADER *ihdr, *chdr;
FILE 'fp;
int ihndl, chndl,

nbandi, nbandc, n, m,
nbands, nclass, *cnum, *count,
roff, coff, isect, *sband, *iband,
match, rowl, nrows, coll, ncols,
*cmbnd, ncomm, iter, nchange,
*clsbnd, *mins, *maxs;

float *rmean, *var, maxerr, minwgt, zero 0.0;
double alphamean;
double alpha_sd;
struct
{

double sum;
double sumsq;
double minalpha;
double maxalpha;

} stats; /* Statistics for the linear weights '/
char iname[129], cname[1291, *clsnm,

*allocateo;

Main routine for mixed pixel classifier

Pixel *buff, *clsbuf13[MA)(CLS] **imgbuf;

title(argc, argv, "Mixed pixel classifier", VMAJOR, VMINOR);

iname[OI = 0;
ihndl = open image("Enter image name", ine, "imng", 10 READ, 0);
if (ihndl < 0)

goto done;

ihdr = get header(ihndl, 0);
if (ihdr = = NULL)

goto done;

iband = get bands(ihndl, &nbandi);
if (nbandi < MAXCLS)

put_string("Irnage MUST have lcod or more bands\n", MAXCLS);
set error(ELOGIC);
goto done:

new ext(iname, "stats", in~rme);
fp = open text('Enter stats file name", ine, "stats", 10 READ);
if (fp = NULL)

goto done;

if (read-stats(fp, &nbinds, &sband, &nclass, &cnuin, &clsnin, &count,
&mins, &inaxs, &mean, &var))

goto done;

(void) fclose(fp);

*Get list of common bands

blist(iband, nbandi, sband, nbands, &cinbnd, &ncomm);
if (ncomm < MAXCLS)

put string("Iinage and stats have < %d common bands\n", MAXCLS);
set -eiior(E_LOGIC);
goto done;

*Compress out unwanted bands

I Main routine for mixed pixel classifier

compstats(sband, nbands, cmbnd, ncomm, nciass, mean, var);

cname[Ol = 0;
chndl = open-image (Enter class map name", cname, '"img",

10_RDWR I 10_EXST, 0);
if (chndl < 0)I goto done;

clsbnd = get bands(chndl, &nbandc);
if (clsbnd = =NULL)I goto done;
if (nbandc < MAXCLS) /* Add new bands as required *

I free((char *) clsbnd);
if (add bands(chndl, MAXCLS-nbandc, 0))

goto done;
clsbnd = get_bands(chndl, &nbandc);
if (clsbnd = = NULL)I goto done;

chdr = get header(chndl, 0);
if (chdr = =NULL)

goto done;

I * Insure geometric compatibility

match = geom_match(ihndl, chndl, &roff, &coff, &isect);
if (match < 0)

goto done;

I if (!match HI!sect)

put string("Image and class map have different geometries\n");

put string("or do not intersect\n");
set -error(E_LOGIC);
goto done;

rowi max(ihdr-> row -start, chdr- > row-start-roff);
nrows = min(ihdr->row -start +ihdr- >row-size,

chdr- >row start +chdr- >row size-roff) - rowi;
cot I max(ihdr- >col start, chdr- >cot start-coff);
col= min(ihdr->col start+ ihdr->coI size,

chdr- >col start +chdr- >col size-coff) - coil1;

Main routine for mixed pixel classifier

* Get window to process
,/

clearscreeno;
if (askwindow(-1, "Process entire area", &rowl, &nrows, &coll,

&ncols))
goto done;

putstring("\n\n");
if (ask_float("Enter maximum least squared error", &maxerr, 1, 0,

V GEMIN, &zero, (float *) NULL))
goto done;

maxerr * = maxerr;

if (ask_float("\nEnter minimum allowable linear weight", &minwgt, 1,
0, 0, (float *) NULL, (float *) NULL))

goto done;/,
* Allocate buffers

buff = (Pixel *) allocate((3*(MAXCLS + ncomm)) *

(ncols + 2) * sizeof(Pixel));
if (buff = = NULL)

goto done;

Divide the area into individual buffers

Sfor (n = 0; n <3; n+ +)

for (m = 0; m < MAXCLS; m+ +)

clsbuln][m] = buff;

buff + = ncols + 2;

* Allocate memory for image buffer pointers
,/

imgbuf = (Pixel **) allocate(ncomm * 3 * sizeof(Pixel **));
if (imgbuf = = NULL)

goto done;

for (n = 0; n < (ncomm * 3); n+ +)

{

Main routine for mixed p2ixel classifier

imgbuflnj = buff;

buff + = ncols + 2;

3 * Start iterating and continue until no new pixels are classified

for (iter = 0, nchange = 1; nchange; iter+ +)

put -string('Starting pass %d\n", iter+ 1);
stats.sum = 0.;I stats.sumsq = 0.;
stats.rninalpha = 9999999.;
stats.maxalpha = -9999999.;I if (iterate(ihndl, chndl, cmbnd, ncomm, cisbuf, imgbuf, rowi,

nrows, roff, coil, ncols, coff, mean, clsbnd,
&nchange, maxerr, minwgt, &stats, nclass))I goto done;

put string("Pass %d, %d pixels classified\n', iter+ 1, nchange);3 if (nchange)

alpha_mean = stats.sum / (double) nchange;
alpha-sd =

sqrt ((stats.sumsq - (nchange*(alpha mean~alpha mean))) /nchange);
put string('Alpha mean = %.2f, s.d. =%.2f, mn = %.2f, mx %.f="

alpha-mean, alpha sd, stats.mi nalpha, stats.maxalpha);

I done:
close-image(IO -ALL);
exit(ioerroro);

I Function add-bands for mixed pixel classifier

#include <string.h>I #include "estypes.h"

int add-bands(hndl, ntoadd, fill)

*Add new bands to an image

I mnt hndl, /* Image handle 5

ntoadd, /* # of bands to add 5

* fill; /* Fill value for new bands 5

Pixel *buff-,
HEADER *hdr;IFDB *fdb;
int row, maxbnd, band, savacc, n;
char *period, name[129];

if (ntoadd < = 0)
return(0);

*Find max band #. Number new bands sequentially from this

hdr = get header(hndl, 0);

if (hdr = = NULL)
return();

*Get the fdb

fdb = get_fdb(hndl);
if (fdb = = NULL)

return(1;

maxbnd = hdr- >band [O].band_num;
for (band = 1; band < hdr- >num-bands; band+ +)

if (hdr- >band [band].band_num > maxbnd)I maxbnd = hdr- >band [band].band-num;

/Reallocate per band area of header

hdr->band = (struct band info *) reallocate (hdr- >band,I (hdr- >num banids + ntoadd) * sizeof(struct band-info));
if (hdr- >band = NULL)

Function add-bands for mixed pixel classifier

return(l);/,
* Fill in new band numbers and names
,/

maxbnd+ +;
file_name(fdb-> headername, name, 65);
period = strrchr(name, '.');
if (period ! = NULL)

period = '\O'; / Terminate at last period */
(void) strcat(name, ".b");
period = &name[strlen(name)]; /* period points to end */

for (band = 0; band < ntoadd; band+ +)
{

n = hdr->num bands + band;
(void)sprintf(period, "%02d", n+ 1);
(void)strcpy(fdb- > header.band[n].band name, name);
hdr- >band[n].band num = maxbnd + band;

}

* Rewrite ASCII header

hdr-> num bands + = ntoadd;
if (updtheader(hndl))

return(l);

* Save old access mode and set access to WRITE with create

savacc = fdb->access;
fdb->access = IOWRITE;/5

* Allocate a buffer
5,/

buff = (Pixel *) allocate(hdr->colisize * sizeof(Pixel));
if (buff = = NULL)

return(l);
/5

* Fill with the fill value

for (n = 0; n < hdr->col size; n+ +)
buff[n] = fill;

/CSCreate the bands
5/

I Function add-bands for mixed pixel classifier

for (band = 0; band < ntoadd; band+ +)

if (set -bands(hndl, 1, &maxbnd))
return();I for (row = 0; row < hdr- >row-size; row + +)

if (write image(hndl, maxbnd, row+ hdr-> row start,

Ieun~) hdr- >col start, hdr- >col-size, buff)

I maxbnd + +;

I * Restore the access

1 fdb- >access = savacc;
*Free the buffer

I Ifree((char *)buff);
return(0);

* Function iterate for mixed pixel classifier

#include <memory.h>
#include "estypes.h"
#include "defs.h"

int iterate(ihndl, chndl, band, nband, clsbuf, imgbuf, rowl, nrows,
roff, coil, ncols, coff, mean, clsbnd, newpix, maxerr,
minwgt, stats, totalclasses)

Perform one iteration of the classification process

int ihndl, / Image handle

chndl, /* Class map handle
band, / Band numbers */

nband, /* Number of bands
rowl, /* 1st row to process
nrows, /* # of rows to process */
coil, /* 1st column to process */
ncols, /* # of columns to process "/
roff, /* Row offset for class map "/
coff, /* Column offset for class map,/

clsbnd, / Class map band #'s */
newpix; / # of pixels newly classified*/

Pixel *clsbuf[3][MAXCLS], /* Buffer area *
imgbuf[]; / Image buffer area

float *mean, /* Class ,neans */

maxerr, /* Max Is error
minwgt; /* Min linear weight 5/

struct

double sum;
double sumsq;
double minalpha;
double maxalpha;

} *stats;
int totalclasses; /* Total # pure classes /

int bnum, /* Current band # '/
Crrow, /* row

newcls; /* # classified this line */Pixel *temp;

static
float 5pixel = NULL, /* Buffer for pixel values

I
I

Function iterate for mixed p2ixel classifier

of ceo~ter pixel *
clsval; / Buffer for class values of

" neighbors (nband rows by
" MAXCLS cols) *

char *a11ocateo;,

*On 1st pass, allocate space for pixel vector and clsval array

if (pixel ==NULL)

pixel =(float *) allocate(nband * (MAXCLS + 1)
sizeof(float));

if (pixel ==NULL)

return();
clsval = &pixel[nband];

*Prepare for 1/O

*if (set -bands(chndl, MAXCLS, csn)
return(1);

if (set bands(ihndl, nband, band))

return(');

*Prime buffers by repeating 1st line

for (bnum = 0; bnum < MAXCLS; bnum+ +)

if (read_irna"ge(chndl, clsbnd[bnum], rowi +roff, coll+coff, ncols,
&clsbuf[O][bnum][1]) < 0)

return(IV
clsbuflO] [bnum] [0] = clsbuf[0][bnuml[1];
clsbuflo][bnum] [neols +1] = clsbuf[0l[bnum] [ncolsl;
(void) memcpy((char *) clsbuf[1][bnuml,

(char *) clsbuflO][bnum], ncols + 2);

for (bnum = 0; bnum < nband; bnum+ +)

if (read image(ihndl, band[bnum], rowi, coil, ncols,
&imgbuqbnum][1]) < 0)

return();
imgbuflbnum][0] = imgbuqbnumj[11;
imgbufqbnum] [ncols + 1] = imgbufqbnum] [ncolsl;
(void) memcpy((char *) imgbuqnband+bnum],

I Function iterate for mixed pixel classifier

(char *) imgbuqbnum], ncols + 2);

I Cycle through the rows

for (row = newpix = 0; row < nrows; row+ +)

I I
count-down(row, 0, nrows);

*Read the image and class map bands unless this is the last line.I * Else repeat last line.

I if (row < (nrows, - 1))

for (bnum = 0; bnum < MAXCLS; bnum+ +)

if (read_image(chndl, clsbnd[bnum], rowl +roff +row + 1,
coll +coff, ncols, &clsbufl2][bnum][1])

return(1);
clsbufI2J[bnum][O] = clsbufl2][bnum][1];

1 clsbufi2[bnuml[ncols+ 11 = clsbuqfl2bnumljncols];

fr(bnum = 0; bnum < nband; bnum+ +)

if (read_image(ihndl, band[bnum], rowl +row+ 1, coil,
ncols, &imgbufl2*nband +bnum][l]) < 0)I return(1;

imgbuf[2*nband +bnum][OJ = imgbufj2*nband +bnum][1];

imgbuf[2*nband +bnum] [ncols +11 = imgbuq25 nband +bnum]I [ncols];

else

for (brum = 0;bnumn < MAXCLS; bnum+ +)

(char *) clsbufll[bnum], ncols + 2);

for (bnum = 0; bnum < nband; bnum+ +)

I (void) memcpy((char *) imgbufq2*nband+bnuni],
(char *) imgbufqnband+bnum], ncols + 2);

I Function iterate for mixed p2ixel classifier

if (clsline(nband, cisbuf, imgbuf, ncols, mean, pixel, clsval,
& newcls, maxerr, minwgt, stats, totaiclasses))

1* return(1;

i If pixels newly classified, rewrite classmap line

if (newcls)

I Snewpix + = newcls;
for (bnumn = 0; bnumn < MAXCL.S; bnum+ +)

if (write image(chndl, clsbnd[bnumj, rowi + roff + row,
coll1+ coff, ncols, &clsbuf[] [bnum][1])

I return(1);

*Cycle line pointers

Ifor (bnum = 0; bnum <MAXCLS; bnum+ +

temp = clshuflO][bnum];
cisbuflO] [bnum] = cisbufi][bnum];
clsbuql][bnum] = clsbuf[2][bnuml;I rclsbuf[2j[bnumj =tep

fr(bnum = 0; bnum < nband; bnum+ +)

temp = imgbufqbnum];
imgbufqbnum] = imgbufjnband +bnum);I ~imgbuqnband +bnum] = imgbufl2*nband +bnum];
imgbuql2*nband+bnum] = temp;

return(O);

Function clsline for mixed pixel classifier

#include "estypes.h"
#include "defs.h"

#define errdump

int clsline(nband, clsbuf, imgbuf, ncols, mean, pixel, clsval,
newpix, maxerr, minwgt, stats, totalclasses)

* /2

* Perform 1 line of the classification

* Modified to flag a pixel with > MAXCLS surrounding neighbors
* as unclassifiable. Modifications also included to flag
* failures of Isfit as unclassifiable (NULLCLASS) and to sort
* the resultant class assignments by their weights. This is
* purely asthetic for simpified output purposes only as ALL
* class assignment info (except for linear combination weights)
* are maintained.

int nband, /* Number of bands 2/

ncols, /* # of columns to process */
newpix; / # of pixels newly classified

2/

Pixel *clsbuq3][MAXCLS], /* Buffer area */
imgbuf[]; / Image buffer area

float *mean, /* Class means */
pixel, / Buffer for pixel values

of center pixel */
clsval, / Buffer for class values of

* neighbors (nband rows by
* MAXCLS cols) */

maxerr, /* Max allowable ls error sq */
minwgt; /* Min allowable linear weight

,/

struct
{

double sum;
double sumsq;

double rIialpha;
double inaxalpha;

} *stats ;
int totalclasses; /* total number of pure classes 2/

double sum: /* Sum of alphas 2/

int newcls, /* # of newly classified pixels 2/

Function clsline for mixed pixel classifier

nclass, /* # neighbor classes 2/

ntype[MAXCLS], /* Neighbor type (+ =pure,O= mix)
,/

clsnum[MAXCLS], /* Neighbor class numbers "/
band, /* Current band # 2/

nghbr, /* Neighbor index 2/

col, /* Current column 2/

cnum, class, n, search, success;
static
int rloc[] = {0, 1, 1, 2}, /* Row locations of neighbors */

cloc[] = {1, 0, 2, 1}; /* Column locations */
float *ptr, *ptr2,

alpha[MAXCLS], /* Linear weights 2/

error, diff;

newcls= 0; /* No pixels clasified yet 2/
/,

2 Cycle through the image columns

for (col = 0; col < ncols; col+ +)
{

/2

* If already classified go to next
2/

if (clsbufl][0][col+ 1])
continue;

/2

* Cycle through the neighbors

for (nghbr = nclass = 0; (nghbr < MAXNBR)&&(nclass <= MAXCLS); nghbr + +)

/2

2 If neighbor not classified, goto next

if (!clsbufqrloc[nghbr]]

[01
[col + cloc[nghbr]])

continue;/2

2 If neighbor is a NULL CLASS pixel, ignore it.
2/

if (clsbuqrloc[nghbr]]
[01
[col+ cloc[nghbr]] = = NULLCLASS)

Function -cisline for mixed pixel- classifier

continue;

Neighbor is classified. Pure or mixed ?

I if (clsbuflrloc[nghbr]J

[col +cloc[nghbr]]) /* Mixed/

for (cnum = 0; cnum < MAXCLS; cnum+ +)

I class = clsbuqrloc[nghbr]]
[cnuml
[col +cloc[nghbr]];I if (Mcass)

break;

*Check to see if we already have this class

for (n = 0; n < nclass; n ++)

if (clsnum[n] ==class)

* break;

*Did we find it ?

if (n ==nclass)

if (nclass =MAXCLS)

*Flag this pixel as no more visits necessary!

clsbufll]II0][col+1I] =NULLCLASS;

nclass+ +; /* Flag too many classes 5

newcls+ +;
break; /* Too many neighbor classes 5

clsnum[nclassl class;
ptr =&clsval[nclass *nband];
ptr2 =&mean[(class-1)*nbandl;

for (band = 0; band < nband; band+ +)Uptr[band] = t2an]

Function cisline for mixed pixel c!assifier

ntypefnclassJ = 0;I nclass+ +;

else /* Pure *

*Check to see if we already have this class

class = clsbuflrloc[nghbr]]

[0]
[col +cloc[nghbr]J;

for (n = 0; n < nclass; n+ +)

if (clsnum[n] =class)

*We have it but was it mixed ?

if (!ntype[n])

ptr = &clsval[n *nband];
for (band = 0; band < nband; band+ +)

ptr[band] =

(float) imgbufqrloc[nghbr] *nhand + band]
[col + cloc[nghbr]];

ntype[nj 1

We have found another occurrence of a pure class. Add the pixel
values and increment count. We'll normalize later

else

ptr = &clsval[n *nband];
for (band = 0; band < nband; band+ +

ptr[band] +
(float) fmbqr[nghrnband + band]

[col + cloc[nghbr]];

U Function cisline for mixed p2ixel classifier

ntype[n] + +;

break;

*Did we find it ?

if (n = nclass)

I if (nclass ==MAXCLS)

cisbuf [1][0][col+ 1] = NULLCLASS;
nclass + +; /8Flag too many classes 8

newcls + +;
* continue; /* Too many neighbor classes 8

I

clsnum[nclass] = class;
ptr = &clsval[nclass * nband];
for (band = 0; band < nband; band + +)

ptr[band] =
(float) imgbuqrloc[nghbr] 8nband + band]

[col +cloc[nghbr]];

ntype[nclass] = 1;I nclass + +;

Have we found between 1 and MAXCLS neighbor classes ?

if ((nclass > 0) && (nclass < = MAXCLS))

Extract this pixel's vector

for (band = 0; band < nband; band+ +)
pixel[band] = (float) imgbuflnband +band][col + 11;

I Normalize any multiple occurrence pure classes

Function clsline for mixed pixel classifier

for (class = 0; class < nclass; class+ +I {
if (ntype[class] > 1)
{
ptr = &clsval[class * nband];
for (band = 0; band < nband; band+ +)

ptr[band] /= ntype[class];

}}

* If 2 <= NCLASSES <= MAXCLS try a strict linear combination. If

* it fails and there are <= MAXCLS-1 classes, see if there isI another "pure" class mixed in by iterratively adding a
* class not occuring in this neighborhood already.

if (nclass = = 1)
search = 1; /* Flag search necessary */

elseI /* Attempt classification with neighbors only S/

if (Isfit(nband, nclass, clsval, pixel, alpha))
{

printf("lsfit returned non-zero.");
errdump (nband, nclass, clsval, pixel);
continue; /* with next pixel */

search = error check (nband, nclass, clsval, pixel, alpha,
minwgt,-maxerr);

" If we didn't have success with a simple linear combination of the
" neighborhood OR if we only had 1 surrounding class, substitute
" in classes not included in the original neighborhood to see if we
* can get an acceptable fit using another (possibly sub-pixel level)
" known pure class using the class means.

if (!search)
success = 1; /* Previous classification successful /

else
{

success = 0;
if (nclass < MAXCLS)

I{

5 Function cisline for mixed pixel classifier

nclass + +; /* We'll have one more class now
for (class =1 ; class < = totalciasses ; class+ +

for (cnum = 0 ; cnum < nclass-1 ; cnum+ +)
if (cisnumn [cnum] = class)

break;

*If we found a non-included class, try it with the neigl&'1rhood

if (cnum = (nclass-1)) /* Ah-ha, found one

I { cisnum [nclass-1] = class;

ptr =&clsval [(nclass-1)*nbandj;
ptr2= &mean [(class- 1)*nbandI;
for (band = 0 ; band < nband ; band+ +)

ptr [band] = ptr2 [band];

ntype [nclass-1] = 0; /* (Mixed pixel *

if (Isfit (nband, nclass, clsval, pixel, alpha))

printfQ'lsfit returned non-zero.\n");
errdump(nband, nclass, clsval, pixel);I break;

I if (!error-check (nband, nclass, clsval, pixel,
alpha, minwgt, maxerr))

success =1

break;

* if (success)

*Passed the test. Store class numbers in classmap bands but
*only if the linear weight for that class was > 0

sortcls (nclass,clsnum,alpha);
sum = 0.;

Function cisline for mixed p2ixel classifier

for (class = n = 0; class < ncl ass; class+ +)
if (alpha[class] > 0.0)

sum + = alpha [class];
clsbuf[1][n+ +][col + I = clsnum[class];

if (n)
newcls + +;

stats-> sum + = (double) sum;
stats- >sumsq + = ((double) sum *(double) sum);
if (stats-> minaipha > sum)

stats->minalpha = sum;
if (stats-> maxalpha <sum)

stats-> maxaipha sum;

*newpix =newcls;

return(0);

Function smatinv for mixed pixel classifier

#define abs(x) (((x) < 0) ? (x) :-(x))

int smatinv(a, n, list)

* Invert a single precision matrix

float *a; /* before: matrix to invert,

after: inverted matrix */
int n, /* nxn matrix */

list; / Scratch vector (n elements) */I{
float detr, abval, b, div;
int irno, icon,

i, ir, j, k;

detr = 1.0;

for(1 = 0;i < n;i++)
list[i] = i;

for (ir = 0; ir < n; ir+ +)
~irno = ir;{

if (ir < (n - 1))

-{
div = abs(a[ir*n+ir]);j =-ir + 1;

for (i =j;i < n;i+ +)
{

abval = abs(a[ir*n+ii);
if ((div - abval) < 0.0)

div = abval;
irno =i;

}

if (irno != ir)

I~ /5
* interchange row ir and irno

for j = 0;j < n;j++)

Function smatinv for mixed pixel classifier

b = alj*n4~irno];
alj*n+irnol = alj*n+ir];
alj*n+ir] = b

detr = -detr;
icon = listlirno);
list[irno] =Iist[ir];
listlirl = icon;

div =a~irsn+ir];

if (div = = 0.0)
return(1);

detr * = div;
a[ir*n~ir] = 1.0;Ifor 0j=0; j <n; j ++)

alj*n+ir] /= div;

if j!ir)

b =a[ir*n+jI;

a[ir*n+j] = 0.0;I for (k = 0; k < n; k + +)
alk*n+jI - b *alk*n+irl;

I interchange columns

3 for (k = 0; k < n; k + +)

for (i = k; i < n; i++)
if (list[iI = = k)

break;

icon = list[k];
list~k] = listli];

I Function smatinv for mixed pixel classifier

Iist[i] = icon;I for j = 0; j < n;j ++)

b = a[k*n+j];I ajlk~n+jI a[i*n+j];
a[i*n+jI b;

return(O);

I Function sortcls for mixed pixel classifier

#include "estypes.h"I #include "defs.h"

intI sortcls (nclass, cisnum, alpha)
int *clsnum;
mnt nclass;
float *alpha;

float temp;

3 *Begin code

fo r (i= 0 ; < (ncl ass- 1 ; i++)Iforj = (i +1) ;j < nclass j ++)

if (alpha [i] < alpha [j])

temp =alpha fi];
alpha [i] =alpha [U];
alpha U]=temp;
temp2 =cisnum [i];
clsnum[i] =cisnum [U];
clsnumUj] =temp2;

I

I Function Isfit for mixed pixel classifier

#include <stdio.h>
#include "eserror.h"
#include "defs.h"

int lsfit(nband, nclass, neighbor, pixel, alpha)/S

* Compute least squares solution of the vector of weights

* for each spectral class surrounding the pixel.2/

int nband, /* # of spectral bands */
nclass; /* # of classes

float *neighbor, /* nband row by nclass column
* matrix of spectral means of *
* neighboring classes */

pixel, / Spectral band values for *
* center pixel 2/

alpha; /* Vector of weights for each *
class (returned) 2/

static
int *list = NULL;
static
float *ntn, *mat;
int class, band,

classl;
char 2allocate();
float *ptrl, *ptr2, *ptr3;

* 1st time through, allocate scratch arrays
2/

if (list = = NULL)
{

ntn = (float *) allocate(MAXCLS*(MAXCLS+nband)*sizeof(float) +

if =MAXCLS*sizeof(int));if (ntn = = NULL)

return(1);
mat = &ntn[MAXCLS*MAXCLS];
list = (int *) &mat[MAXCLS*nband];

}
/*
* Compute product of neighbor matrix and its transpose

2/

I ptrl = neighbor;
for (class = 0; class < nclass; class+ +)

Function Isfit for mixed p2ixel classifier

ptr2 = neighbor;
ptr3 = &ntn[class];

for (classi 1 0; class 1 < nclass; classl1+ +)

ptr3 [0] 0.0;
for (band = 0; band < nband; band+ +

ptr3[0J + = ptrl[band] *ptr2[bandj;

ptr3 + = nclass;
ptr2 + = nband;

ptrl + = nband;

*Invert this

if (smatinv(ntn, nclass, list))

set error(ELOGIC);
return();

*Multiply the transpose of neighbor by the inverted matrix

ptrl = ntn;
for (class = 0; class < nclass; class+ +)

ptr2 =neighbor;
ptr3 =&mat[class];

for (band =0; band < nband; band++)

ptr3[OI 0.0;
for (class1 = 0; classi < nclass; classl+ +)

ptr3[0] + = ptrl [classl1 *nclass] * ptr2[classl~nbandl;

ptr3 + = nclass;
ptr2+ +;

ptrl + +;

I Function Isfit for mixed p2ixel classifier

*Generate alpha weights by multiplying pixel vector by mat

for (class = 0; class < nclass; class+ +)

alpha[class] = 0.0;

for (band = 0; band < nband; band+ +)Ialpha[class] + =mat[class +band* nclass] pixel[band];

return(O);

Function error check for mixed pixel classifier

#include "estypes.h"
#include "defs.h"

int
error-check (nband, nclass, clsval, pixel, alpha, minwgt, maxerr)

float *pixel;
float *alpha;
float *clsval;
int nclass;
float minwgt;
float maxerr;

int class,
band;

float error,
diff;

* Begin code
5/

for (class = 0 ; class < nclass ; class+ +)
if (alpha [class] < minwgt)

alpha [class] = 0.;

error = 0.;
for (band = 0 ; band < nband ; band + +)
{

diff = -pixel [band];
for (class = 0 ; class < nclass ; class+ +)

diff + = alpha [class] * clsval [class*nband+band];

error + = diff * diff;

if (error > maxerr)
return (1);

return (0);

I}

I
I
I
I
I
I
I GENERAL FLOW LOGIC FOR MIXED PIXEL CLASSIFICATION

I
U
I
I
I
I
I
I
I
I
I
I

I
I START

I
STAGE I

I) Select a training area of pure pixels
2) Develop mean & variance/covariance matrix
3) Alarm all pixels at 1-sigma level
4) Vary the variance up & down to cover a pure pixel set
5) Remove these pixels from the data set & label removed pixels

with a class identifier

I
I
IYE

YES STAGE 2

More classes ?I?

N0

STAGE 3
All pure pixel data sets are tagged and removed.
The remaining pixels are simple or mixed pixels,

or possibly pure pixels of an undefined class.
The remaining pixels should be a small

percentage of the original pixel set.

I
I

OYES Does the pixel have 2 NI or more neighbors that
are pure pixels

ofknw
clsss

I

GROUP A
PIXELS

I i
STAGE 5

1) Solve for simple mixed pixels, mixture of only
pure pixel types from the nearest neighbors.

2) Remove these pixels from the data set & label
removed pixels with a class identifier

ST AGE 6 1GROUP B

1)Aggregate the pixels remaining in GROUP A PIXELS
with the pixels in GROUP B

2) Does the
Y YE S pixel have 2 or NO

. more neighbors that are
pure pixels of known /

classes or simple

mieIies

. [GROUP Ai

STAGE 7
1) Solve for simple mixed pixels, mixture of pure

pixel types & known simple mixed pixels from
the nearest neighbors.

2) Remove these pixels from the data set & label
removed pixels with a class identifier

ST AGE 8

1)Aggregate the pixels remaning in GROUP Ai GROUP Bi
with the pixels in GROUP Bi

GROUP Ai g m i

I 5

GROUP Bi

STGI
DosteIie
hae1oIoeN

A PRIORI
INFO

I STAGE 10
Solve for complex mixed pixels made up from the

neighbors and the a priori information

ICp = al*C I +a2*C2 + + *X

I

I APPENDIX 2: CONTRACT DELIVERABLES NOT INCLUDED AS PART OF THIS
REPORTI

The following is a list of the separately delivered photographic products:

item # Quantity Description

1-5 2 each Color print of 2k x 2k source mosaic in band
combination 247 (BGR) at a scale of 1:100,000
for five scene dates (May 1985, August 1985,3 October 1985, May 1987, and March 1989)

6-10 2 each Color print of 2k x 2k source mosaic in band
combination 274 (BGR) at a scale of 1:100,000
for five scene dates (May 1985, August 1985,
October 1985, May 1987 and March 1989)

11-15 2 each Color print of 2k x 2k source mosaic in band
combination 354 (BGR) at a scale of 1:100,000
for five scene dates (May 1985, August 1985,
October 1985, May 1987 and March 1989)

m 16-20 2 each Color print of 2k x 2k source mosaic in band
combination 234 (BGR) at a scale of 1:100,000
for five scene dates (May 1985, August 1985,
October 1985, May 1987 and March 1989)

21-25 2 each Color print of 2k x 2k source mosaic in band
combination 123 (BGR) at a scale of 1:100,000
for five scene dates (May 1985, August 1985,

m October 1985, May 1987 and March 1989)

26-30 2 each Color print of 2k x 2k source mosaic in a
Tasseled Cap transform at a scale of 1: 100,000
for five scene dates (May 1985, August 1985,
October 1985, May 1987 and March 1989)

I 31-32 2 each Color print of 2k x 2k source mosaic of
classification at a scale of 1:100,000 for scene
dates May 1985 and May 1987

33 2 total Color print of subscene change detection between3 May 1985 and May 1987 using a maximum likeli-
hood classification at 3.0 standard deviations

I

34-36 2 each Color print of subscene change detection between
May 1985 and May 1987 using a mixed pixel
classification at a least squares tolerance of 15
pixels, 10 pixels and 5 pixels

37-39 2 each Set of 2 color prints of subscene mixed pixel
classification at a least squares tolerance of 15
pixels, 10 pixels and 5 pixels for a scene date of
May 1985

40-42 2 each Set of 2 color prints of subscene mixed pixel
classification at a least squares tolerance of 15
pixels, 10 pixels and 5 pixels for a scene date of
May 1987

43 2 total Black and White image of principal component
urban vector image with atmospheric, vegetation
and intensity components as a composite of all
scene dates

44-79 2 each Color transparency of Items #1-36

80-81 2 each Color transparency of subscene mixed pixel
classification at least squares tolerance of 15, 10
and 5 pixels for scene date of May 1985 and May
1987

82-83 2 each Color transparency of subscene mixed pixel
classification 4 level classmap with maximum
likelihood classification of 3.0 standard deviations
for scene dates May 1985 and May 1987

The following is the list of separately delivered magnetic media products:

85 1 5-1/4 inch floppy disk of the final report in
WordPerfect Version 5.1 format.

86 1 Magnetic tape of the mixed pixel source code
developed for this report in unlabeled ASCII 9
track 1/2 inch 6250 bpi format

87 1 Magnetic tape of the subscene classifications done
for this report in unlabeled sequential 9 track 1/2
inch 6250 bpi format

I APPENDIX 3. Projection operators and band combinations

1. Projection along a given axis

We assume we are working with 6-band TM data. Then any pixel in a scene has the

Igrey levels in all 6 bands described by a 6-vector, g.

IGiven any other (fixed) unit 6-vector, P, a new band can be created, corresponding to

Iprojection along the axis of P, in which each pixel has the new grey level, P. g.

This new band can be displayed, for any choice of P, and is uniquely defined when P

is specified. P is chosen, usually interactively, to maximize (or minimize) some chosen

I image property.

2. Projection erpendicular to a given axis

Given the unit vector P, we can consider it as an axis in a rotated space, relative to

the original 6-space of the TM data. There will then be a 5-space orthogonal to P.

However, even when P is given, the 5-space orthogonal to it may be defined in many

Idifferent ways.

IOne common method uses Gram-Schmidt orthogonalization. With this technique, if

the original band axes are el...e., then 6 new axes, each orthogonal to P, can be defined by

Iforming
eli = P- (ei / ei.P)

I These new axes are not orthogonal. and they are also not linearly independent.

However, a set of 5 independent and orthogonal bands can be created from them in the 5-

space orthogonal to P by forming

El e,1 /l e l l

Iwhere Ie,' =length of e11 = e e

2= (E, -(e 2 /E,.e 2))/ I El - (e2
1/E,.e 2)

3= (El - (e2'/E,.e2 ') - (e3 /E,.e 3'))/j E, - (e-2/E,.e2
1) - (e3 /E,.e 3

1) I
and so on up to E5

3. Further projection operators

We now have a defined direction, P, and a set of 5 bands orthogonal to P and to each

other.

We can now therefore choose a second vector, Q, in this 5-space, and project along it

as before, by forming Q . g', where now the grey levels g' are those in the five-space

defined by E,.. .Es, orthogonal to P.

Having selected Q (by definition orthogonal to P), a new space orthogonal to P and Q

can be defined by a Gram-Schmidt orthogonalization in the 5-space E,.. .E,. As before, we

form a set of vectors.

f = Q - EI/E,.Q

and use them to build 4 independent and orthogonal bands, F, by F = fl/I f1I, etc.

- The whole procedure may be repeated for projection vectors R, S.. .until a total of 6

orthogonal bands, each a linear combination of the original 6 bands, has been found.

i
I

I
I
I
I
I

